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In this paper an approach to multidimensional magnetohydrodynamics (MHD)
which correctly handles shocks but does not use an approximate Riemann solver is
proposed. This approach is simple and is based on control volume averaging with a
staggered grid. The method builds on the older and often overlooked technique of
on each step taking a fully 3-D Lagrangian step and then conservatively remapping
onto the original grid. At the remap step gradient limiters are applied so that the
scheme is monotonicity-preserving. For Euler's equations this technique, combined
with an appropriately staggered grid and Wilkins artificial viscosity, can give results
comparable to those from approximate Riemann solvers. We show how this can
be extended to include a magnetic field, maintaining the divergence-free condition
and pressure positivity and then present numerical test results. Where possible a
comparison with other shock capturing techniques is presented and the advantages
and disadvantages of the proposed scheme are clearly explaitaego1 Academic Press
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1. INTRODUCTION

Over the past 20 years approximate-Riemann-solver-based algorithms for solving
perbolic systems of equations have proven both simple and robust. In MHD studies tt
is a growing reference list of multidimensional Riemann-solver-based numerical schen
An early example by Brio and Wu [1] demonstrated the power of such a scheme for
problems and later such techniques were shown to extend well to TVD schemes [2]. Inn
than one dimension approximate Riemann solvers have been devised which maintair
magnetic field divergence-free condition [3, 4]. This list is by no means complete and ot
examples can be found in [1-3]. With this background it may seem unusual to be develoy
new schemes which are not based on an approximate Riemann solver and all of the bel
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that such an approach brings. This introduction explains the background problems wt
led us to reconsider Lagrangian remap codes and sets the scene for later sections v
discuss in detail the choice of algorithm, its testing, its advantages and disadvantages.

The primary motivating factor in writing this code was that it should be easily adaptak
to a variety of problems in solar coronal physics. While having broad applicability (st
later tests), it is in this niche that the benefits of the current approach are most cl
The corona is dominated by its magnetic field but observed optically. The corona is a
highly dynamic with current sheets and MHD shocks. For comparison with observatic
simulations must therefore give accurate temperature predictions but be capable of han
shocks. This presents a problem which applies to any method which solves the equat
in conservative form, including Riemann-solver-based schemes. By solving for the tc
energy such approaches conserve energy to machine precision. This is of course a
thing on its own. However, this does mean that the pressure must be found by subtrac
the magnetic and kinetic energy from the total energy. In the low-beta plasma of the s
corona the magnetic energy density is typically 1@ 10° times larger than the thermal
energy density. For a plasma beta, defined as the ratio of thermal pressure to mag
pressure, of 10° this means that a 0.1% error in the magnetic field leads to a 200% er
in calculating pressure and temperature. While one could argue that for such low beta:s
plasma pressure has little effect on the evolution this does not help if, as is often the ¢
it is an accurate estimate of the temperature which one wants. This becomes particu
important if one needs to find ionization levels or thermal conductivities which are sensit
to the local temperature. There is a pragmatic solution to this problem proposed by Bal
and Spicer [5] but unfortunately this is ignored in most Riemann codes. This involv
using an additional equation to update the pressure. The error in the temperature is
determined by the scheme’s truncation error and not the difference of two large ter
Balsara and Spicer [5] use flags to determine when to use the pressure from the e
equation or that calculated from the conservative form. The approach adopted in Lar
can therefore be viewed as not enforcing exact energy conservation, although the err
of course still bounded and convergent with other finite difference errors, in order to get
accurate and physical prediction for the temperature.

Any approach which does not depend on a characteristic decomposition of the ec
tions also benefits from freedom in the choice of equation of state (EOS). While arbitrz
equations of state can be accommodated in Riemann-solver-based schemes, the succ
such approaches for table lookup EOS (for example, the Los Alamos SESAME datak
[6]) where the decomposition cannot be achieved analytically is not clear. However, t
is a simple procedure to adopt in the Lagrangian remap scheme described in this pe
Non-hyperbolic terms, such as viscosity and resistivity, can be included in most scher
without too much difficulty and in the present scheme such terms are simply added i
the Lagrangian step; the remap is purely geometrical and contains no physics. If large
cosity or resistivity are included then a more efficient approach would be to use sim
finite differences as in these cases any shocks would be diffuse anyway. In the solar co
and many astrophysical plasmas, the viscosity and resistivity are so low that the aim i
include the minimum possible diffusion. In such circumstances shock-capturing techniq
of some sort are always needed as the gradients present will still cause Gibbs's overs
with finite difference schemes. Indeed, there is a strong case for always including artifit
viscosity, i.e., viscosity which is only present at shocks and goes to zero as the resolutic
increased in smooth regions, to avoid known numerical problems with upwind-based sh
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schemes (see [7] for details). Such an approach has been adopted in MHD Riemann c
(see [8], for example) but such schemes will still have difficulty with low-beta simulatior
if accurate estimates of temperature are required. Some additional terms, such as the
term in Ohm’s law, change the characteristics of the problem and their inclusion is cumt
some in a Riemann code but straightforward in codes such as presented here or other ¢
schemes which do not rely on characteristic decomposition, e.g., TVD Lax—Friedrichs
in [9]. A further advantage of the current scheme is the ease with which it can be aday
to include multimaterial interface tracking as described in [10].

The problem we address in this paper is therefore to devise a scheme that can he
shocks in ideal MHD but is not tied to a Riemann solver or conservative form. The hope
then to have a core code which can easily accommodate extra physics without sacrifi
shock resolution or energy conservation. In attempting to do this we have returned to
scheme originally devised by van Leer [11]. This was based on taking a Lagrangian ¢
and then conservatively remapping back onto the original Eulerian grid. Limiters we
applied at the remap step to ensure monotonicity and the Lagrangian step used a Riet
solver. Following this paper most research was directed at schemes which abandone
Lagrangian step and concentrated on the approximate Riemann solver. Here we tak
opposite approach and keep the Lagrangian remap scheme but abandon the Riemann
For Euler solvers this is not a new idea. Indeed the earliest examples, such as used by
in the CEL code [12], predate van Leer’s paper. A complete history and bibliography
such work can be found in Benson’s review article [13]. One other noteworthy paper wh
discusses Lagrangian remap schemes must also be mentioned. This is the review a
by Woodward and Collela [14] which used the BBC Lagrangian remap code in a set
comparison tests. In these tests the BBC code performed rather badly, actually giving w
results than FCT schemes. This has somewhat dented the credibility of Lagrangian re
schemes. We will show later in this paper that the algorithm adopted in this paper doe
fact produce results comparable to those of Riemann-based solutions and the poor re
in Ref. [14] stem from that particular Lagrangian remap scheme.

Where this paper does introduce new computational algorithms is in the inclusion of
magnetic fieldB, viscosity, and resistivity. While none of these is in itself radical it is the
first time that all of these effects have been included in such a code. The magnetic fiel
defined on a staggered grid and uses Evans and Hawley’s constrained transport mode
to keep the divergence of tli®ezero to within machine precision. A staggered grid is no
actually essential for keeping - B = 0, as was demonstrated by Peter&tral. [16], but
the staggering greatly simplifies the spatial centering of the scheme, as will become ¢
later. We should also point out that the paper by Petezkial. [16] is also a Lagrangian
remap code but did not include viscous or resistive effects and was not tested on MHD sF
problems. Artificial viscosity is based on the form of viscosity presented by Wilkins [10
Resistivity is split into two parts: an artificial resistivity similar to the artificial viscosity
and a user-specified resistive term.

The scheme outlined in this paper, i.e., a Lagrangian step followed by a Van Leer limi
remap, has great similarity to the arbitrary Lagrangian—Eulerian (ALE) codes. Indeed
present scheme can be viewed as a sort of ALE scheme. It is therefore important to as
the current scheme against the background of published ALE codes. In ALE codes
splits the time update into a Lagrangian step, as here, and then a remap onto a new
before the next time step. Actually ALE codes do not have to remap every step and
leave remapping until the Lagrangian grid becomes too distorted or some other critel
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is satisfied. Note, however, that this remap is not necessarily back to the original grid
is the case here, but to any arbitrary grid. In this context the current scheme is an A
scheme in which the remap is not to a general grid but to the original Eulerian grid. Detz
of ALE codes for fluid dynamics can be found in Hirt [17] and Brackbill and Pracht [18]
The greatest difference between the current scheme and these references is in the r
of the remap. Here this is done using van Leer piecewise linear reconstructed data. Th
vital if code is to accurately resolve shocks. For example, the shock problem in Fig. 4¢
[17] is a weak shock with 60 zones in total and approximately 10 zones across the shu
This compares with the current scheme which resolves the shock with just three zc
(see Fig. 2 of this paper). In 3D, ALE codes which rely only on viscosity to resolve shoc
would require aroundBimes more grid points to achieve the accuracy of a shock-capturir
scheme. This remains true for ALE codes extended to MHD such as that in Ref. [19]. T
strength of ALE schemes lies in their ability to adapt the grid without the defects of f
Lagrangian codes, notin their treatment of shocks. The reverse is true for the current schi
Although the scheme in this paper is a variant of an ALE code our desire to test the sh
capturing properties of our scheme means that comparison with more conventional A
schemes would be inappropriate as these were not designed with shock treatment a
primary goal. Instead we compare results with codes which also directly attempt to har
shocks, such as approximate Riemann solvers, as this is a more fair comparison of like:
like.

Section 2 contains a description of the code. Test results from the code are then prese
in Section 3. We have chosen a set of tests which are well established in the literature
in particular have chosen the same initialization used in Ref. [4], as this paper contains
largest set of quantified tests. The conclusions and final comments are in Section 4
details of the finite difference equations in Appendix A and less common aspects of
code moved to Appendix B and C.

2. THE Lare3d CODE

The full version of this code solves the resistive MHD equations in 3D Cartesian geome
The code is freely available to anyone by contacting the authors by email. In order to simp
the description of each of the steps in the code this section is split into subsections eac
which deals with one of the main features. An explicit description of the finite differenc
equations can be found in Appendix A.

2.1. The Model Equations

Here we introduce the normalized MHD equations in the form they are used in the co
For reference we also introduce the terminology used later in the paper when discus
Riemann problems in ideal MHD. Adopting standard normalization the equations of res
tive MHD can be written in Lagrangian form as

Dp

L _pv.v, 1
Dt pV -V 1)
Dv 1 1

— = —(VxB)xB—Z=VP, )
Dt P
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DB

Dt =B-V)V-B(V-v) -V x (nV x B), (3)
De P n .5

- __V. £ 4
Dt p V+pJ , (4)

where j = V x B is the current densityy is the velocity, P is the thermal pressure,
e = P/p(y — 1) is the internal energy density (= 5/3 is the specific heat ratio) is
the mass density anglis the resistivity. These equations are also supplemented by t
conditionV - B = 0 which is an initial constraint for the differential equations but must b
enforced explicitly in any numerical scheme. A key dimensionless parameter in MHD st
ies is the plasma beta defined as the ratio of thermal to magnetic pressufes.€./B2.
Viscous effects will be discussed in a later section.

One of the advantages of the current approach is that the Lagrangian step is fully th
dimensional; i.e., there is no Strang splitting imposed on this step. This is particuls
important for updating, as Eq. (1) is not used in practice. Instead, the density change
related directly to volume changes using mass conservation. In particular, if a plasma f
element is initially at a poinK = (X1, X2, X3) and moves to a point = (X1, X2, X3) then
this new poinix is a function of the old positioX and of time. This implies that the change
in element length is given by

9%;
dx = d 5
X %, Xas (5)
with summation convention am. We then have that
Po
- 6
p=" (6)

where g is the original density and is the determinant of the Jacobian transformatior
matrix,

a9

X1 X1
0(Ke Xa, Xg) | P 0%
) 9Xo X3

When dealing with control volumes using Eq. @)is the ratio of the final volume to

the initial volume.A appears in the control volume averages of most quantities and in
code is evaluated as

A =1+ (V-v)dt, (8)
where the divergence is evaluated on the Eulerian grid. This is second order accurate ¢

if we consider the change of position,

dt
X (X, 1) = X; + / ux(Xa, Xa, Xz, 1) dlt. ©)
0

Taking a Taylor series far, about the original positioX and then expanding any remaining
time dependence about= 0 gives

Uy
X3

Uy
Xy

JVy

X1 = Xq + vyedt + v dt? + v,dt? (20)
X1

vydt® +
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with x, and x3 similarly defined. Taking partial derivatives of these with respect t
(X1, X2, X3) allows us to expand the Jacobian matrix with each term accurate to secc
order,

1+ 2edt g dt B dt
A=| Iedt 14 2dt Jzdt | (11)
by dt sedt 14 2edt
This gives
A=1+ (83;’(1 bt ;;Z)dwomtz), (12)
A =1+ (V-v)dt+ O(dt?); (13)

hence Eq. (8) is second order accurate and Eq. (6) is used in preference to a finite differ:
representation of Eq. (1). Relating density changes to volume changes and using tl
volume changes consistently elsewhere in the code also guarantees exact conservati
mass.

The update procedure outlined later requires the Lagrangian equations for the cor
volume average® field and the flux. These are derived from Eq. (3) and are

% Bidr = /vi B.-ds— /[V x (nV x B)]; dr, (14)
D .
ot B-ds:—/m-dl, (15)

where integrals in Eq. (14) over andds refer to integrals over the volume of a control
volume and its surface. Integrals in Eq. (15) odkrefer to line integrals around the surface
integrated over in thdsintegral.

While the above equations are the complete set needed to explain the algorithms 1
in Lare3d here we also present some standard equations from approximated Riem
solver theory. This is simply to give a convenient reference point for later discussions.
keep the presentation brief we simply use a 1D version of a non-TVD limited schen
Details can be found in, for example, Ref. [2]. Representing the ideal MHD equations, i
Egs. (1)-(4), withy = 0, in conservative form we have

oU oFWU
LR _

— 0. 16
ot X (16)

Then updating the cell-averagéll is achieved by

At
urtt =un - B(Fiﬂ/z —Fi_12), 17

1 1
Fir12 = SIFUL) + FUR)] = 5 D endudri (18)
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wherery are right eigenvectors of the Jacobian magﬁx Ak are the eigenvectors, ang
are the coefficients in the expansion

Ur—UL =) adw. (19)
k

Throughout these equatiobl refers to the state on the right of the interface Blpdhe
state on the left.

2.2. The Grid

The variables are staggered on a computational cell as shown in Fig. 1. All scalars
defined at the cell volume cent&-field components are staggered onto cell faces so th
V -B = 0 can be maintained with the Evans and Hawley constrained transport [15]. .
velocity components are defined at the cell vertex. The velocities must be staggered
respect to botB and the pressure to avoid checkerboard instabilities. This can be satisf
by defining the velocities at cell edges or the cell vertex. Defining all velocities at the sa
point leads to a single velocity control volume at the remap stage and a more compact «
and is therefore the choice adopted here.

2.3. The Lagrangian Step

The Lagrangian step is a simple predictor—corrector scheme. Predicted values are fi
from an Euler step with timesteght/2. Then conservation of mass in Lagrangian contro
volumes is used to simplify the time-centered Lagrangian source terms by evaluating del
tives on the original Eulerian grid (see Appendix B for details). The end result is a secc
order scheme, both in time and space, which is fully three-dimensional and does not
conservative form. There are two complications in this step: the update of the magnetic f
and artificial viscosity.

FIG. 1. The position of primary variables defined on a 3D computational cell.
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Concentrating first on th8 field update withn = 0 we note that Eqgs. (14) and (15)
are particularly simple in this case. Equation (15) is just aifig’ theorem for nonresistive
MHD:; i.e., the magnetic flux through an area moving with the plasma is constant. Also,
the remap step (see Section 2.4) deals only with magnetic flux, all we need at the end o
Lagrangian step is the magnetic flux through the control volume faces. Whe@ this
is simply the flux at the start of the Lagrangian step and is trivially found by multiplyin
the B field components by the area of the appropriate Eulerian cell face. The correc
step update of Eq. (2) does require the time-centered magnetic field(foreeB) x B =
—VB?/2+ (B-V)B. Here it is desirable to hayg?, the magnetic pressure, defined at the
same place as the thermal press@.€ hisis achieved easily by using Eq. (14) as an equatio
to update the control-volume-centerBdield from the cell-face magnetic fluxes. Thus in
the Lagrangian pha®¥ is face centered" /2 is volume centered, arl't! is not needed
at all.

The effectiveness of Lagrangian steps with artificial viscosity can be most clearly se
at the theoretical level by returning to Eq. (18). Final proof of the effectiveness will ¢
course be presented later in the form of numerical tests. Equation (18) is capable of trez
shocks due to its direct handling of discontinuities as the jumps across the characteri
of the linear problem. It is this feature which is intrinsically difficult to include as artificia
viscosity in Eulerian-based finite difference codes. The great advantage of a Lagrant
stepis that the fluxes in Eq. (18) are all zero except for the velocity. The E}e@akp\klrk
in Eq. (18) are then precisely of the same form as real viscous forces applied to the velo
update. Put simply, in a Lagrangian step all that one needs to update is the velocities
equivalently the position of the cell vertices, and all other quantities are found from thc
using conservation of mass and magnetic flux. This is not true of artificial viscosity appli
to an Eulerian code where the care in updatingvhich is implied by Eq. (18) is not
guaranteed by the difference scheme. This is the main reason artificial viscosity applie
a Lagrangian remap code is more effective than artificial viscosity applied in an Euler
scheme.

The actual form of the artificial viscosity used in these tests is taken from Wilkins [1C
This is particularly simple in that it is a scalar viscosity; i.e.,

q = c1pCrLIs| + cL%ps2. (20)

In this formulac; is the local fast mode speed, not the sound speed as would be appropr
for simple gasdynamicd4. ands are the grid length and the strain rate, both measured |
the direction of the acceleration. This approach preserves shock structure moving obliq
across the grid. More complex forms of artificial viscosity do exist; see e.g., Ref. [20], wi
tensor viscosities. Our original intention had been to use this simple form just to get
code up and running before moving to more complex approaches. However, we found
for the tests presented here the simple Wilkins form was perfectly adequate and we have
“upgraded.” Forms of artificial viscosity simpler than Wilkins, e.g., standard von Neuma
viscosity applied in each direction separately, do, however, fail in multidimensional tes
The important features of Wilkins viscosity which must always be correctly included a
thatitis positive heating and does not apply viscosity tangential to a shock front. Through
this paper we use; = 0.1 andc, = 1.0 unless otherwise stated.

For MHD shock problems the above viscosity-based approach does handle shocks
rectly. However, we have found that ~ 0.8 is required to guarantee that there is no
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overshoot. This leads to solutions that are more diffusive and also reduces the time
through the CFL condition. To avoid this we apply artificial resistivity through Eqgs. (14
and (15). The above discussion has demonstrated that there are good theoretical re
for artificial viscosity to be effective in a Lagrangian step. Furthermore, the specific fol
of viscosity, Eg. (20), can be justified as the limiting form of the gasdynamical jump co
ditions (see derivation of Kurapatenko in Ref. [10]). Unfortunately, there seems to be
such derivation for choices of artificial resistivity. Our attempts at such a derivation he
also been unsuccessful and we have resorted to a pragmatic approach for the choi
resistivity. The conditions we imposed were that this resistivity must be positive heati
and vanish as the resolution increases, except at discontinuities. From the forms we
tried the simplest prescription which satisfies these constraints is sgttingi At, where

va is the local Alfvén speed. Furthermore only the perpendicular current is used with t
anomalous resistivity in Egs. (14) and (15). In all of the test results presented later the ok
heating quoted refers to the heating due to this form of resistivity. Equation (15) is upda
in the same way as Eg. (3), which is another simple application of the Evans and Haw
constrained transport method of keepWgB = 0 [15].

2.4. The Remap Step

The remap of variables from the Lagrangian grid back onto the original Eulerian grid
done in one-dimensional sweeps. These are Strang-ordered and are the only part of the
which is not fully three-dimensional. While one would like a fully 3D code this procedur
at least has the advantage of all of the physics being handled in a fully multidimensio
way in the Lagrangian step. The remap step is a geometrical step designed to mair
monotonicity. At this stage it is possible to build two- or three-dimensional informatic
into the gradient calculations but to date we have only implemented separate 1D swe
The remap is performed in each direction by simply following van Leer’s original algorith
[11] using Lagrangian variables to remamnd then mass coordinates to renvagnde.
The magnetic flux is remapped using the stand@rd-preserving scheme but is now
applied to aremap as opposed to an Eulerian advection. The changes needed to conve
advection into a remap are trivial. In all remaps we use the third order estimate of grad
suggested by Youngs [21] and limiting procedure Eqg. (101) from [11]. The Lagrangi
step is only second order accurate, so there is no need to use a third order accurate |
estimate of gradients in the remap step. However, this costs nothing computationally
we found that for simple 1D wave problems it slightly reduces the numerical dissipatic
As a result we have retained the third order scheme because it costs nothing, does no |
and occasionally helps in simple problems.

The scheme for remapping uses mass coordinates wherever possible. This cons
mass, internal energy, and momentum to machine precision. However, in this form it d
not conserve kinetic energy. This is only significant at shocks where the limiters flat
gradients in the remap step. The loss of total energy at shocks can weaken them
therefore a procedure for correcting this is needed. Such techniques have been used b
although not in the form used here, and details and references can be found in Sectiol
of Benson’s review article [13]. The precise kinetic energy remap scheme used her
explained in AppendiC . Thus the combined Lagrangian remap step is energy-conservi
for Euler's equations. The same technique applied in Appendix C could also be exten
to magnetic energy but at present this has not been implemented. This is not a prot
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for the tests presented here and energy conservation will be reported later with each o
tests. Note that the properties of the scheme mean that these energy errors can alwa
identified as errors in magnetic field energy.

3. NUMERICAL TESTS

3.1. 1D Euler Equation Riemann Problems

We begin this catalogue of numerical tests with two tests of the code solving Eule
equations only. These are both of historical interest and are included here to clarify a-
points raised in the Introduction. Since the core idea of this code is to take the basic sch
of van Leer’s original paper [11] and replace the Riemann solver with an artificial viscos
it is worth returning to the original Sod’s problem used by van Leer as a test. Figure
shows the result for Sod’s problem, having the same initial conditions, etc., as in Ref. [1
both with viscosity (solid line) and with zero viscosity (asterisks). Note that removing tt
Riemann solver from van Leer’s algorithm and replacing it with a predictor-corrector fini
difference scheme only introduces a small overshoot behind the shock. This is removedw
viscosity is included. This demonstrates two main points: Sod’s problem is not particula
demanding and the Lagrangian remap scheme is clearly far more robust at handling sh
than Eulerian finite difference schemes. ALE codes which do not use van Leer remapp
or an equivalent, are also less accurate at treating shocks (see Fig. 4a in Ref. [17]).
also demonstrates, albeit indirectly, the importance of using a limited gradient in the ren
phase. It is this, along with the choice of artificial viscosity and staggered grid, whi
distinguishes.are3d from conventional ALE schemes.

The next Euler equation solver test was for interacting blast waves. This was taken fr
Woodward and Collela’s review article [14]. In this review tests were presented whi
showed an example of a Lagrangian remap code (BBC) performing rather badly. We rej
this test to show that this is not true of there3d code and also to show that such interacting
strong shocks present no difficulty. This 1-D problem is initialized in<a® < 1 domain
with reflecting ends ang = 1, v = 0. The shocks are initialized by the pressure with
P =1000 forx < 0.1, P =100 forx > 0.9 andP = 0.01 elsewhere. Figure 3 shows the

©
o0
—

<@
N
T

0.0t .
00 02 04 06 08 10

FIG. 2. Numerical solution to Sod’s problem for comparison with results in van Leer [11]. The solid line i
the result with viscosity the symbols are the result with zero viscosity.
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TABLE |
Interacting Strong Shock Convergence Tests

N Time steps €(4800) €(9600)
200 421 0.136 0.141
400 853 0.078 0.082
600 1283 0.053 0.058
1200 2576 0.026 0.029

density att = 0.038 for the region ® < x < 1 for two resolutions (200 and 1200 zones)
for comparison with the results in Ref. [14]. Assessing these results by eye shows that
are comparable to the results from the MUSCL scheme used in Ref. [14]. To quantify
we have calculated

1 N
e:NZ’pi_piacc

i=1

: (21)

wherep?®Cis an accurate answer. In Ref. [14] a special adaptive code was used to find
exact solution to use in Eq. (21). We do not have such a code and have therefore use
results from 4800 and 9600 zones as estimateg¥drand in both cases have calculated
for arange of grid sizes. These are presented in Table I. In this¢@860) is the evaluation
of Eq. (21) using 4800 zones fpf°® ande (9600) for the same with 9600 zones. All results
were produced with a Courant number of 0.8 aade3d requires slightly more steps than
equivalent codes in Ref. [14] due to the inclusion of the viscosity coefficients in the CI
condition.

Assuming that thé.are3d converges to the correct answer these figures show that t
current Lagrangian remap scheme, with Wilkins artificial viscosity, gives results as gooc
those from the MUSCL scheme in Ref. [14] (the estimate oh a 1200 grid for MUSCL
was 0.04 in Ref. [14]). The solid lines on Fig. 3 show overshoots at the end of rarefact
fans (in this case at = 0.59 andx = 0.76) which means that the estimates in Table |
will be out by a small amount and biased in favor of the current scheme. However, e
allowing for this the results shown are better than those for the FCT schemes but not as ¢
those for as the PPM-based algorithms. The better performance of the PPM schemes i
surprising as this is a 1D problem with strong rarefaction waves. We postpone considerz
of execution speed compared to other schemes until later.

3.2. 1-D MHD Riemann Problems

The most commonly tested 1D MHD Riemann problem was originally set up by Br
and Wu [1]. This shock tube test is repeated here with left stat®,, P) = (1, 1, 1),
right state(p, By, P) = (0.125 —1,0.1), and B, = 0.75. All other variables are initially
zero and our solution differs from that in Ref. [1] in that we take- 5/3. The numerical
solution att = 0.1 with 800 cells forp, vy, By andvy is shown in Fig. 4. This allows direct
comparison with the same test in Refs. [1, 2, 9].

What is clear from Fig. 4 is thatare3d handles the MHD shocks as well as the TVD-
MHD codes. Since energy is only conserved exactly for Euler problems (see Appendix
there is an energy error in these resultst At 0.1 energy is conserved to within 0.09% and
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FIG. 3. Results for the interacting blast wave problem at two resolutions. Crosses on the left figure show
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FIG.5. Repeat of the test from Fig. 4 but with the shock propagating diagonally across an&uDgrid.

the accumulated artificial viscous and ohmic heating contributions are both 0.37% of
total energy. Note that artificial viscosity converts kinetic energy into heat, in total 0.37%
the total energy, but does not contribute to the energy error. It conservatively converts en
from kinetic to thermal. The same is true of the resistive term which converts magnetic fi
energy into heat conservatively.

Figure 5 is a repeat of the Brio and Wu MHD shock tube problem with the same se
as in the previous paragraph, but now on a 80800 grid with the shock propagating
diagonally across the domain. While this uses a 2D grid it is still essentially a 1D proble
and tests the codes’ ability to evolve shocks obliquely across the grid. The only discern
differences between these plots and those of Fig. 4 are in the slight change in the treat
of the compound shock and slight overshoots at the end of rarefaction fans 81425
andx = 0.45.

3.3. Orszag-Tang Vortex

The Orszag—Tang vortex problem has been used in numerous papers [3, 4, 22, 23] as
test for MHD codes. Here we use the same normalization as in Ref. [4]. The advantag
this choice of normalization is that Ref. [4] supplies quantitative estimates of the accur:
of schemes, other papers leaving the success of the Orszag—Tang vortex test to a quali
or aesthetic judgment. Following Ref. [4] we use three resolutions folNthe N grid
with N = 50, 100, and 200. The relative numerical error for a variabkedefined as the
L1 norm of the error relative to an accurate solution. The accurate solution here was te
as that obtained from a run with a 480400 grid and the accurate solution was obtaine
on the course grids by control volume averaging as described in Ref. [4]. Using the s:
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TABLE 1l
Average Errors in the Orszag—Tang Test

N=50 N=100 N =200

(i(t =1 0.0344 0.0157 0.0052
8(t =314 0.1494 0.0792 0.0308
Aet=314 14 0.57 0.23

code to define the accurate solution in the calculation of errors does introduce a bia
favor of the current scheme. This is especially true as the high-resolution reference solu
is only double the resolution of th = 200 result. The same procedure is adopted ir
Ref. [4], with which we are making comparisons, except that in Ref. [4] an average of t
N = 400 solutions is used to alleviate some of the biasing. Thus while the error estime
presented here fal = 50 and 100 should be accurate, that for= 200 is likely to be
overly optimistic. However, without an analytic solution it is not possible to estimate th
bias, or indeed that in Ref. [4], and we simply proceed with caution when looking at t
details of the error estimates fbf = 200. Table 1l shows the average errors for this test a
t =1 andt = 3.14. The averaged errat, is the average of the; norm of all primitive
variables and\¢ is the percentage energy error. For the same test problem in Ref. [4] t
bests on aN = 200 grid was 0.0026 at= 1 and the best at= 3.14 was 0.0300.

FIG.6. Pressure distribution for the Orszag—Tang probletn=aB.14. The computational box has 280200
grid points.
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FIG. 7. 1D pressure distribution for the same problem as Fig. 6 along a quta2.686 (upper panel) and
y = 1.963 (lower panel).

For comparison with results in Ref. [22], Fig. 6 shows a contour plot of the pre
sure att = 3.14 with 30 contour lines. The time af= 3.14 corresponds tb= 0.5 in
the normalization used in Ref. [22], so Fig. 6 can be compared directly with Fig. 10
Ref. [22]. Figure 7 shows cuts through the pressure distribution at points equivalent to th
in Fig. 11 of Ref. [22]. All of this quantitative and qualitative evidence shows that the prese
Lagrangian remap scheme performs as well as Riemann-solver-based schemes once ¢
and discontinuities form in the Orszag—Tang vortex test, i.e., at time3.14. However,
Table Il also shows a somewhat surprising feature. While the errors on the 200 grid
att = 3.14 are as low as those for the best schemes tested in Ref. [4], the resuitslat
are comparable to those of the worst code tested. Thus while3d is good at treating
shocks it is not as good for smooth flows when compared to approximate Riemann sol
This can be clarified by finding the convergence of the average errorsLfsea8d for a
simple wave.

3.4. Circularly Polarized Alfen Waves

Circularly polarized Alf\én waves are an exact solution to the full nonlinear equations |
ideal MHD in a uniform medium. To allow direct comparison with the results in Ref. [4] w
initialize a periodic box with an Alfeh wave propagating at an angle= 30° to thex-axis.
The normalization and initial conditions are the same as in Ref. [4]. For this setup at ti
t = 1 the flow should have returned to its initial state. Table Il shows the averaged arrors
calculated fromthe , v,, B, , andB, variables. These errors are attime 5 and are based
on comparison of the result ait= 5 with that att = 0 for the same resolution. As a result
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TABLE 11l
Average Errors for Alfv'en Waves

3 1.966 0.633 0.142 0.035
Amplitude error  0.014 0.055 0.005 0.0013
Phase error 2.597 0.663 0.138 0.033
|val error 0.072 0.018 0.0028 0.00086

they do not have the biasing discussed in the previous section and can be compared dir
with results in Ref. [4]. Also shown are the results from an FFT of the initial and final da
which was used to find the amplitude error (definedas = 0) — a(t = 5)|/a(t = 0),
wherea(t) is the amplitude), the phase error in radians, and the error in thei\|fhase
speed calculated from that phase error. Note that this is the error in the phase speed i
direction of propagation, not along tlxeaxis.

The average error, phase error, @yl error all show second order convergence. The odt
behavior of the amplitude error on coarse grids is due to these grids not actually represer
a(t = 0) accurately. The dominance of phase error over amplitude error can be clearly s
from Fig. 8. The conclusion from these tests is that the present scheme cannot accur
find the phase speeds on coarse grids. The code has to recover this from finite differe

64 x 64 grid 32 x 32 grid
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FIG. 8. The orthogonal component of the magnetic fiBld = (\/§By — By)/2 for the circularly polarized
Alfv'en problem. The initial condition is shown as a full line and the resutt-at5 as dashed line for four
resolutions.
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TABLE IV
Average Errors in the Rotor Test

N =50 N = 100 N = 200
s 0.1421 0.0711 0.0283
Ae 0.51 0.28 0.15

in the Lagrangian step unlike approximate Riemann solvers where the characteristic sp
are included automatically (see Eq. (18)). This may also explain why the errors in
Orszag—Tang test are comparatively podratl. Shock propagation is, however, handled
accurately, as witnessed by the accuracy achieved-a8.14 in the same test. If the need to
resolve wave speeds accurately were paramount for a particular problem then the solt
would be to replace the Lagrangian step with a higher order version. The scheme wit
still remain second order due to the remap but the Lagrangian phase would then accur
resolve the phase speeds. Even with the phase speed errors at their current levels it i
not obvious whether this ighysicallyworse than the results presented in Ref. [4], wher
there is no phase error for the best codes but all codes strongly damp the wave on the ci
grid. Indeed, the best codes in Ref. [4] show an amplitude error of approximately 0.7
an 8x 8 grid compared to an amplitude error of 0.014 for the same test UsirgRd. Put
crudely the question is: in any particular simulation is it better to have wave energy arr
early or on time but with a reduced energy density?
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FIG. 9. Density, thermal pressure, Mach number, and magnetic pressure @tl5 for the rotor problem.
The solution was obtained on a 480400 grid and the figure shows 30 contourlines.
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3.5. Rotor

This problem is taken from Ref. [4] and is identical to the first rotor test Wite 1 from
that paper. Table IV shows the usual table of averaged errors and energy conservation at
t = 0.15. Figure 9 shows contour plots of density, pressure, Mach number, and magn
pressure for a 408 400 grid.

This problem converges with first-order accuracy as expected and once again the re
are comparable with those from approximate Riemann-solver-based schemes. The
result obtained for this test on ah = 200 grid from Ref. [4] was = 0.0276 att = 0.15,
although once again one needs to be cautious in comparing these numbers, as they
produced with different small (but unquantifiable) biases as discussed in Section 3.3. A
previous sections this is not ideal but without a standard reference solution for 2D Mt
shock problems there is little alternative. As a result we have chosen to follow the proced
adopted in Ref. [4], as this was the first paper to attempt a systematic quantitative se
convergence tests for 2D MHD problems.

3.6. Low Beta MHD Tests

This section demonstrates the benefits of the current scheme compared to traditi
schemes based on the conservative form for low beta plasma tests. Comparisons
been made between results framre3d and a code which follows exactly the prescrip-
tion set out for the TVD Riemann scheme in Ref. [23]. Using this TVD scheme repr
duces the figures produced byre3d in the paper thus far. Up until this point the aim
has been to demonstrate that a Lagrangian remap scheme, which abandons the cc
vative form, can correctly handle the standard MHD and Euler shock problems. T
last section shows some of the benefits which follow from dropping the conservat
form.

The first test is a simple 1D Alen pulse. Thex domain is defined in-1.5 < x < 1.5
and initially p = 1, By = 1, vy = 0.2 exg—x2/0.01}, and all other components 8fand
velocity are zero. The specific energy density is set to31$b that the plasma beta is
2 x 1073/(I" — 1). These tests are run to= 1. Figure 10 shows the results from 300 grid
points using.are3d and 30,000 grid points for the TVD scheme.

The reason so many more points were used for the TVD scheme in Fig. 10 is explai
in the convergence test for the TVD scheme. Figure 11 sladvesn the TVD scheme with
resolutions of 300, 3000, and 30,000 grid points. The poor results from the conservative f
of the TVD scheme follow partly from the pressure, and hence specific energy density
temperature, being derived from the difference of two large terms. Repeating:tbad
run with 3000 grid points reproduces the same result as with 300 grid points to within a f
percent and it is theare3d result which is the correct converged answer. The other reasc
for the TVD schemes overheating the low beta plasma relates to Section 3.4. Here it
shown thatLare3d damped the amplitude of simple waves far less than Riemann-bas
schemes of equivalent order. The energy that the TVD scheme dissipates from the mag
field of the wave is placed into the thermal energy. Thus for a TVD Riemann scheme
produce accurate temperature estimates in solar coronal simulations it would either hay
use around 100 times the resolutiorLafe3d, or an equivalent approach, or a high-order
scheme, such as employed by ENO codes, to prevent wave damping. In practice 3D run
limited to about 308 so Fig. 11 shows the scale of error in the pressure one would expe
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FIG. 10. 1-D distribution ofe for the low beta Alf\€n pulse test. The solid line is frobare3d on a 300 cell
grid and the dashed line is from the TVD scheme on a 30,000 cell grid.

for such a grid; i.e., the error is the same order as the solution itself. However, in 2D ¢
3D runs it is more usual that conservative schemes (such as the TVD scheme used |
will fail due to negative pressures. This is true for the Orszag—Tang vortex test, which fz
with the TVD scheme when initialized with = 10~3 but runs without error i.are3d.

As a final test we return to the Brio and Wu shock problem of Section 3.2. Figure
presents results from the same setup as in Section 3.2 but now the solid line isxfrega
and the points are from the TVD scheme. This confirms that both schemes produce
same solution for this MHD shock problem.

However, as for the Orszag—Tang vortex test, the TVD scheme fails with negative
ternal energy if the plasma beta is reduced. Figure 13 shows the resulLéosBd of
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FIG. 11. Convergence of the TVD scheme for the 1D distributiors oh the low beta AEn pulse test. The
solid line is for 30,000 grid points, the dashed line for 3000 grid points, and the dotted line for 300 grid points
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FIG. 12. Solution of the Brio and Wu MHD shock tube problem but wjth= 5/3 and 800 cells. Snapshots
are taken at = 0.1. The solid line is the result frofmare3d and the points are from the TVD scheme.
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FIG. 13. Solution of the Brio and Wu MHD shock tube problem but wjth= 5/3, 800 cells,e = 1072
throughout and, = 5 forx < 0.5.
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setting up the standard Brio and Wu MHD shock test but then settind 0~ everywhere
and increasing the initial perpendicular magnetic field compori@gptfor x < 0.5 from
1to5.

4. CONCLUSIONS

We have written and tested a Lagrangian remap cbaee3d) for solving multidimen-
sional MHD. One of the main motivating factors in this work was to develop a flexibl
code suitable for simulating events in the Solar corona. Such a code needed to be caj
of capturing shocks, accurately finding the local temperature, and allowing the inclusior
additional nonhyperbolic physics (resistivity, viscosity, radiation, thermal conduction, grz
ity, etc.). These requirements lead us to a Lagrangian remap scheme for the nonconsen
form of the MHD equations. The basic features of the code are

e The Lagrangian step is second order in space and time and uses mass consen
(mass coordinates in 1D) whenever possible.

e The magnetic field is defined on cell faces and is updated with constrained trans;
to keepV - B = 0 to machine precision.

e The Lagrangian step includes Wilkins viscosity which prevents Gibbs overshoot &
maintains shock structure for shocks moving at angles across the grid.

e The density is remapped using Lagrangian coordinates but energy and velocity
mass coordinates.

e Even though the equations are not in conservative form the Euler part of the cc
conserves energy to machine accuracy. This procedure could be extended to the mag
field energy but this hasn’'t shown itself to be a critical issue so far.

We have performed a set of tests wittire3d which demonstrate its ability to handle shocks
and have compared the results of these tests with those from other shock capturing sche
The features of any multidimensional code are always difficult to quantify. In an attempt
highlight these features and compare them with other schemes we include below lists o
successes from the tests and those areas where other codes give better results. As alwa
such comparisons there are grey areas where different users (depending on the applic
they have in mind) may see things differently. With those words of caution we begin wi
a list of the features of the tests whérgre3d did not perform as well as other codes.

1. While all of the tests in this paper were performed with the same Wilkins viscosi
it was only through experience that we have learnt to use those values. For radically
ferent tests one may find that these values need changing L&hua8d is not as robust as
approximate Riemann solver-based codes.

2. In the 2-D Brio and Wu test (see Fig. 5) and the high-resolution strongly interacti
shock test (see Fig. 3) there is evidence of overshooting at the end of rarefaction fans.
is not Gibbs overshoot, since it is resolved by many points and smooth, but it should no
present in an ideal solution.

3. The Lagrangian step only finds the characteristic speeds to second order accu
This causes the circularly polarized Aéfa’'wave to have a numerical speed which is large
than unity for that test and consequently gets a poor value for avetagearm errors.

The first of these points is not a major problem. From low-resolution tests one will knc
if the viscosity needs to be increased so that little time is actually wasted repeating
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production runs with an assortment of values for the linear viscosity. The second poin
clearly an error in the way the code treats rarefaction fans for such test examples. We |
no explanation for why the code should be able to handle shocks well but have trouble v
smooth regions of the solution. We do, however, note that3d is not alone in having
this undesirable feature (see, e.g., Fig. 5 in Ref. [9] and Fig. 13 in Ref. [24]).

The positive features dfare3d are

1. The code does correctly handle shocks. Furthermore, for most shock tests whe
guantitative comparison is possible (Orszag—Tang vortex and rotoriiestsid performed
as well as Riemann-solver-based codes. The exception to this was the 1D interacting st
shock test where the PPM method was more accurate.

2. The scheme preserv®s. B =0 to machine precision at no extra computational cost

3. By not using the conservative form, but still correctly handling shocks, the scher
is able to accurately find the local temperature even for low-beta plasmas such as the ¢
corona.

4. For the Alfvén wave test problerhare3d showed very little damping of the wave
even on an & 8 grid.

5. All of the physics is contained in the Lagrangian step which is unsplit and full
three-dimensional.

The results of Ref. [4] have shown that dimensionally split algorithms do give accurate r
ults for the Orszag—Tang and rotor tests. Whether a clear distinction between splitand ui
lit techniques becomes evident when source terms, radiation, conduction, etc., are inclt
is not clear and will have to be the subject of future investigations. The Lagrangian ren
approach adopted itere3d does easily lend itself to the inclusion of both tensor viscositie
and interface tracking through volume fractions (see Benson'’s review for details [13]).

If you already use, or are about to acquire, a Riemann-based ideal MHD shock captu
code, should you abandon your plans andLise=34d instead? Of course not! These tests
have shown that the present scheme is as good as well-written approximate Riemann so
but not better. Perhaps the most surprising result of this paper is that this is possible witt
using acharacteristic-based method. So provided you wantto solve ideal MHD problems
you have &V - B = 0-preserving approximate Riemann solver code the results in this pay
are of general interest only. However, if you wish to perform simulations of the solar corol
or any other plasma with a beta below 0.1%, then unless you adopt a procedure similz
that in Ref. [5] any estimates from a conservative-form-based code for the temperature
be very inaccurate. Attempting to then calculate ionization levels or thermal conductivit
from these temperatures will inevitably lead to inaccurate results. Balsara and Spicer
have shown a way of avoiding these difficulties but this approach is overlooked in t
majority of codes. If in addition to a low plasma beta one also wishes to have simulatic
which are also expected to take into account complex equations of state or interface trac
then the approach afare3d offers distinct advantages.

Assessment of the performance of codes, especially parallel performance, is always
conclusive than we might like. It depends strongly on architecture, compilers, interconne
etc. In this case another factor is that the code was written in HPF to run typically on ei
CPU's of a cluster of four CPU SMP machines. There is an overhead in using F90 ant
times serial speed is compromised to achieve better parallel scaling under high perform:
Fortran (HPF). With these cautionary remarks noted, using a Compaq ES40 with 500-M
EV6 processors, 4 MB cache per CPU, and Compag’s FO0/HPF compiler? gri@z2est
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run of the Orszag—Tang problem took 141.6 s on one CPU, 36.1 s on all four CPUs of
ES40, and 20.2 s on eight CPUs, i.e., two ES40s connected through Memory Chanr
interconnect. For comparison a straight F90 coding of the TVD Riemann scheme in F
[23] took 123.5 s for the same problem on one CPU. This code was not written in F
full array notation; i.e., it avoided slower constructs needed to make HPF effective &
is therefore more clearly optimized for serial execution. For a fixed number of timeste
Lare3d is actually faster than the TVD scheme but only by about 10%. The longer runtir
to a fixed time in the Orszag—Tang problem, even though both codes use a CFL numb
0.8, is because the artificial viscosity appears in the CFL conditibare3d so it requires
more timesteps to reach a given fixed final time. The conclusion that we draw from th
tests is thaL.are3d costs about the same, in CPU time, as an equivalent TVD Riemal
scheme. For 3D tests 10 steps with a®1g8d took 735 s on 1 CPU, 184 s on four CPUs,
and 110 seconds on eight CPUs. This shows signs of stalling on eight CPUs but larger ¢
jobs have scaled linearly on a CRAY T3E up to 64 CPUs.

APPENDIX A

Details of Finite Difference Scheme

In this Appendix we present a summary of the finite difference equations used in the cc
Itis intended to cover all of the detail necessary to understand the core numerical sche
Anyone wishing to obtain a copy of the full Fortran90 source code (actually in full parall
HPF) can do so by contacting the authors at tda@astro.warwick.ac.uk. Figure 1 define:
location of the primary variables on the grid. At the start of each step all of these are defi
at the same time; i.e., there is no leapfrog component. The Lagrangian step is a sir
second order predictor—corrector scheme. To distinguish the different time levels, varia
with no superscript, e.gv, refer to variables on the Eulerian grid at the start of the stey
variables with a star superscript are half-timestep Lagrangian predictor valueg; ,eagd
variables with a superscript 1 represent the values at the end of the Lagrangian ste}, e.
and are defined on the displaced Lagrangian grid. At several points throughout the sch
variables are needed at different locations than those defined in Fig. 1. The averaging
depends on whether the variable is a volume average peay.a surface average, e.B.x.
Since the Eulerian grid can be stretched we begin by defining; x as the volume of each
cell. For the set of indice§, j, k) pi,j k ande; j « are the averages ovevol j \ of density
and specific energy, and are defined at the cell volume céwgy. is thex component of
the magnetic field and is defined to be face centered on the face at+ dxh j /2, where
XG,j k is thex coordinate of the center of the cell adalh ; « is the length of the cell in the
x direction.By; j x andB7 j « are similarly defined, as atyh j x anddzh j «. The remap
stage also usedkc dyc dzg, wheredxcis the distance between the center of the contrc
volumecvol ; « and the center of the control volumeaiol ;1 j «, and similar definitions
apply todycanddzc All of the components of velocity are defined at the cell vertex so thz
VX, j k is defined at the poir(b(q,j,k + de’j,k/Z, YG,jk + dyb_j,k/z, ZGjk + de’j,k/Z).

To obtain the density at the cell vertex;; ,, we use control volume averaging; i.e.,

i+1 j+1 k+1

Plik= SCVO‘UJK > 3> Amncvolmn, (A1)

I=i m=j n=k
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where

i+1 j+1 k+1

cvol | = % >3 ) cvolmn (A.2)

I=i m=j n=k

is the velocity cell control volume. The field components at the cell center are simply the
averages of the values on opposing faces. The velocity components defined on cell f
e.g.,vxh j « are defined by averaging over the four vertex values.

Using the above conventions the predictor stage of the Lagrangian step can be brc
down into the following finite difference equations. In the remainder of this Appendi
omission of a subscriptimplies that all variables should be subscriptediwijttk). Initially
only the scheme without the resistive terms will be described and resistive effects introdu
separately at the end. This helps to emphasize the core MHD code and shows how addit
terms are added to this core solver. In reality, even in running an ideal MHD proble
artificial resistivity must be included at shocks, but purely to make the description of t
code as clear as possible we shall define here the core code to be ideal MHD plus
artificial viscosity. First, the thermal pressupas defined by

P=e(—-1p (A.3)

and the total pressu@q, = P + q with g defined from Eq. (20) taken directly from [10].
The predictor value of the specific energy density is then given by

8t PotalV - v
rop— oAy ¥ (A.4)
2 p

wherest is the timestep an®.v is found from

vxbjk —vxB_yjk  vybjk—vyb ik vzl jk — vzl jk-1

Vv = A.5
dxh jk dyh jk dzh jk (A-5)
The Jacobian of the predictor Lagrangian step is then defined by
then
1]
* = A7
P A* ’ ( )
Pow = ¢"(C' = Dp* + 0. (A.8)

Note that the artificial viscous pressuyés not advanced to the predictor level. To find the
predictor value for the force one must now updateBhigeld so that the Lorentz force is
correctly time-centered. The predic®ffield is cell-volume-centered and follows from the
finite difference version of Eq. (14), e.g., fBix* this is

1

Bx* = —
A*

o : . . !
- xt X ot e y
{Bx+ OIXb[(vx Bx) (vx BX* ] + Olyb[(vx By (vx By)Y ]

st " .
+ m[(vx BZ) — (vX BZ) ]} s (Ag)
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where(vx Bx)*" means the product afx and Bx averaged to the center of thxeface at
XG,jk +dxh jk/2and(vx BX)* isaveragedtotheface axg jx — dxh j /2. Similarly
(vx By)Y" meang(vx By) averaged onto thg face atyq j x + dyh j /2 etc.

We now have the predictor values of pressure and magnetic field and can there
calculate the vector force at the cell vertex. This is found fféim= B* - VB* — %VB*2 —
V P*, where now the averaging needed to define magnetic field components at the de:
locations must now use control volume averagind3’ais a volume-centered variable. The
predictor step is then completed by finding the half timestep predictor velocities definec
the cell vertex from, e.g.,

. st Fx*
VX" = X + —
2 pv

, (A.10)

whereF x* is thex component of the predictor value of the vertex force.

The corrector step is now straightforward since Bhigeld does not need to be updated.
The B field components are simply converted into fluxes using= Bx dyb dzb etc.
for @y and ®z. Since the core solver is for ideal MHD, with artificial viscosity, the flux
is conserved during the Lagrangian step. The corrector step is therefore an update o
density control volume for each cell usind = 1 + 5tVv*;i.e.,cvolt = cvol A, followed
by

Fx*

el=e—S8tPH, —, (A.11)
P
1P
P=11 (A.12)
*
vx! = vx + 5t——, (A.13)
pv

with similar equations fowy! andvz®. Note that in the update of the specific energy
density and velocities it is the original Eulerian density that is used. This is based
using control volume mass conservation during the Lagrangian step and is made explic
Appendix B, where the finer details are discussed. The final set of variables to be upd
are @xb, dyh dzb, which are simply calculated frordxlql,j’k =dxh jk+ (xb;  —
vxby st etc.

All variables have now been updated a full timestep and are defined on the Lagrang
grid. The next stage is to remap these variables back onto the original Eulerian gric
that the whole process can continue. The remap step is entirely geometrical and inclt
no physics or time dependence. However, the monoticity-preserving property of 1D |
perbolic equations is built into the remap by the use of van Leer-limited piecewise line
reconstruction. The remap is done in 1D sweeps in the usual Strang-ordered way. Tc
plain the entire remap process it is therefore sufficient to cover just thenap, ag/ and
z remaps follow exactly the same scheme. In what follows we therefore dro@ tkig
subscripts and deal only with a 1D remap. Note that this simplification assumes that
start with Lagrangian variables suchiag and end with the final fully updated variable on
the Eulerian grid, i.eyx(t + §t). In 3D thex remap can actually start with variables which
have, for example, been modified by a&map and for which the output needs to be furthe
remapped ire. In what follows thereforex’ refers to thex component of velocity before
thex remap andx"** refers to the velocity after the remap. Henoée only equalsyx? if
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thex remap is the first after the Lagrangian step. If fn@map is not the last direction to
be remapped thesx"*! becomesx’ for the next stage of the remap and so on for all othe
variables.

The density is remapped conservatively so that the total mass in the cell after the rel
p"1dxbis equal to the mass before the rempéad x b minus the mass from this Lagrangian
cell which overlaps the Eulerian cell at+ 1 (d M;) plus the mass from Lagrangian cell
i — 1 which overlaps the Eulerian cel{d M;_;). Sincep’ dxld = p dxbthis becomes

1
Pin+l=p+m(dMi—l—dMi), (A.14)
where
, dx .
dM = (pi + %D, 1- wi)>vxi ot (A.15)
and
Vi = axyg (A.16)

Note that in these two equations” is the velocity of the boundary butin 3D this needs to be
replaced by the face-centered veloaighy*. The variableD in this equation is the van Leer
piecewise linear, limited gradient. In this implementation the gradient is found by initial
calculating the third-order upwind gradient from the formula for a general varigtile.,

— C—yi) I fiza— il Q+9) i — fial

s for vX! A17
| Dy 3 axc + 3 axo . or vx; > 0, ( )
— Q=) I figa— Gl Q@+ ) [fio = fipl ,

D;| = f ! < 0. A.18
d 3 dxg T3 dxG.q orv% = (A.18)

The magnitude of the gradient obtained, i1e5;|, is then limited, if need be, using the
procedure given as Eq. (101) in [11]. In the current notation this is

Di = s MAX (IDi|dxh, 2| fiy1 — fil, 21 i — fi_a]), (A.19)
where
s = sign(fiy— fi) ifsign(fiyg — fi) =sign(fi — fi_q), (A.20)
s =0 otherwise '

This then completes the remap of density afid! andd M; are stored.

The specific energy density remap follows the same basic procedure as that of the del
but the remap now uses tldéM; values to complete the remap in mass coordinates. Th
builds the mass conservation into the remap of other variables and is achieved for the spe
energy density through

1
1 / /
Sin+ = (8i dth 1% + d8i_1 — dSi)W, (AZl)
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where

,, dxb dM _
dey = <gi +TD.(1_ m))dM (A22)

Now D; is the van Leer-limited gradient of the specific energy densitydznis the energy
remapped (not specific energy density) from ced cell (i + 1).

Mass coordinates are also used to remap the velocity components, thus ensuring co
vation of momentum in the remap step. The only additional complication introduced for t
velocity is that the velocity components are defined at cell vertices. Since the velocity h:
different control volume than the densitiM; andvx{ must be averaged to the appropriate
faces of the velocity control volume before the remap can start. In all other respects
velocity remap is the same as that of the specific energy density.

The calculation of the magnetic flux to be remapped follows the same approach as
of the density. The total flux through thyeface atyc ; x + dyh j «/2 is unchanged during
the Lagrangian step and is given by = By dxbdzband this is remapped using*
to find the area of Lagrangian cells overlapping neighboring Eulerian cells ir faess
of the remap. However, since the flux is defined as a face surface averaged quantity
velocity must be defined at the edge center; i.e., in Eq. (AukB) . must now be replaced
by vXi,jk = 0.5(vX"; « + vX*j (1) In all other respects the calculationaby; |, they
flux remapped from celii, j, k) tocell(i + 1, j, k), follows the calculation ofi M; j «. The
V - B = 0 scheme then requires that

Dy = DYk — APV jik,

(Dyin-rll:]',k = q)y|+1]k + d®yi,i=k’
(A.23)
DX = DX jk + DY k.

q)Xinfll,j,k = ®Xi41,jk — ADPY jk.
etc., for the other components. Converting the fluxes back into field components tl
completes the remap step and all variables are defined on the original Eulerian grid re
for the next Lagrangian step.

The artificial resistivity can then be added in the same manner as the artificial viscos
i.e., calculated only at the start of the step, and the resulting heating only addetased
on that value. Alternatively, it can be added in a time-centered way and combined wit
real second order accurate resistive term. This is then included in the calculation of
time-centered; the time-centere® field is then used to recalculate the contribution to
heating in order to maintain second order accuracy. The time-cerefieldl is also used
to evaluate the RHS of Eq. (15), which then simply updates the fluxes ready for the stal
the remap step.

APPENDIX B

Energy Conservation in the Lagrangian Step

In this Appendix we present the proof of energy conservation in the Lagrangian s
update of Euler’s equations. The generalization of this to 3D is straightforward but tedio
For simplicity here we also assume that the grid is uniform, at the start of the Lagrang
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0 pi.j — VKb,

i1yl Vi

FIG. 14. The position of variables defined on a 2D grid.

step, inx andy but thatdx # dy. This proof is also valuable as it clearly shows how
conservation of mass is built into the Lagrangian update step on every possible occasio
1D this reduces to the usual mass coordinates of Lagrangian fluid dynamics. In 2D and
the scheme is simply a staggered grid control volume approach with exact mass and er
conservation.

We begin by defining a set of new variablegh ; is thex component of the velocity
defined on the cell edge (face in 30);; is the density defined at the cell vertew’; =
pi’; dx dyis the mass in the velocity control volume.

See Fig. 14 for clarification of the locations on the grid. The energy calculation is p
formed at the corrector step so superscnpts + 1/2, andn + 1 refer to time levels. The
change in kinetic energy between levelandn + 1 over the entire domain is

2
AKE = Z MY, ( = 07 (B.1)
= Z MY, (o — o) o2, (B.2)
From Eqg. (2) with no magnetic field we get

UX;

dt

n+1 n __ n+1/2 n+1/2 n+1/2 n+1/2

ij VX = 2 dx"+1/2 (o7 n+1/2( v R - Ra - Pi+1~j+1)- (B.3)
X (D)

Using this equation along with mass conservation in a Lagrangian cell, i.e.,
M’ = (p;)" dx dy, (B.4)
_ (piljj )n+1/2 dxn+1/2 dy““/z, (B.5)

we can regroup the terms in Eq. (B.2) containig to get

STAKE ;=Y PNV, (B.6)
i,j isj
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where
dVij =dt[(vxb ; —vxb_y;)dy+ (vyb ; —vyb j_1) dX] (B.7)
and
oty = (VAT 4 o ) (B.8)
2dy

In these expressiontyv'//? is the predicted value afy'/ % through the vertex, i.e., the

predicted value ofly for the velocity control volume. Note that Eq. (B.7) is the equivalen
todVij = V-vdtdxdyusing Eq. (B.8) for the velocities and taking derivatives on the
original Eulerian grid. With these definitions if we insist that

Y AE=—) PV (8.9)
ij i

with E = [ pedr, then the scheme will conserve energy to machine precision. Tk
amounts to using Eg. (B.8) to find average velocities and then when calculating the a
batic P dV heating term in Eq. (4), making sure that we use these same average veloci
This is also sufficient to guarantee that at the Lagrangian corrector step all derivatives
still taken on the original Eulerian grid. This last property also carries over to finding tl
time-centered magnetic forces in Eq. (2). However, we have no proof that exact ene
conservation holds when the magnetic field is included. Indeed, in this code the magr
field at the end of the Lagrangian step is never actually needed or calculated. Thus w
energy errors are quoted in this paper they must entirely be due to errors in the magr
field update scheme.

APPENDIX C

Kinetic Energy Remap

In this Appendix we present the calculations used to conserve energy in the remap ¢
We consider the change in the kinetic energy. This is then summed over the cells to
the energy which is lost in the remap. This energy is then added into the internal ene
as a heating term, thus conserving the energy (note that magnetic energy can still be |
We explain the velocity remap energy conservation by describing the first-order donor «
method. The full remap for any order is similar but with the velocities replaced by fluxe
Here we deal only with the remap. They andz remaps are carried out in a similar manner.
The x remap step uses’ as the vertex velocity before the remap aridas the vertex
velocity after the remap. Conservation of mass can be written as

m = mi0 —dmi12 +dmi_y, (C.1)

wherem? is the mass in the velocity control volume before the remapnanithat after the
remap.dm 1, is the mass flux through the left boundary of the velocity cell during th
remap. The remap also conserves momentum; i.e.,

um =u

! ! 020
it i m

172 1/2
- ui4/—l/2dm+l/2 + Uiil/zdm—l/Z’ (C.2)
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We consider the change in the kinetic energy,

1., 1 2
AKE = Sm u)? — Emio(uio) , (C.3)

or

2 1 2 1 1,
AKE; =uf (Uil/l/z - 2 dm_1/2 —uf 341/2 2 O)dmy2 + émi a’, (C.4)

where
0 1/2 dm 12 L2 dm_ 1/2
a = (U — Utp) m + (U5 -y ?) m (C.5)
i i
We now splitAK E; j in terms ofdm1,» anddm_y, to obtain,
1 a;
AKE =dmyqp <_Uio (Uilizl/z - 2“?) + (uilﬁ/z - u0)2>
1 aj
+dm 1 ( ( U~ 2u°) + (U’ - U|1/21/2)2> (CH)
For exact kinetic energy conservation we require
> AKE =0. (C.7)
i
However, we have
Z AKE = Z dkiy1/2dmMii1/2, (C.8)
where
0 o (2 1 0 1 (a2 0
dkiyr2 = (U — u) (Uikaye — > (U +u) ) + >3 (Ui+l/2 - ui)
1 1/2
+ EaiJrl ( i+1 |-{-1/2) (C,9)

This means that we have total energy conservation if we convert the lost kinetic ene
into thermal energy by using

Z A(ept)ir =+ Z dkiy1/20m 1. (C.10)
i i

The Lagrangian step followed by a remap onto the original Eulerian grid is not «
operator-splitting algorithm. There is no time dependence at all in the remap step wh
is simply a geometrical rezoning of computational variables. It is for this reason only tt
we are allowed to enforce total energy conservation in this way. Indeed, all conserva
schemes, i.e., schemes cast in the form of Eq. (16), which limit the momentum or veloc
at shocks by enforcing total energy conservation will ensure that dissipated kinetic ene
appears as thermal energy. Since we do not use conservative forms we must ensure th:
happens by a different computational mechanism.
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