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In this paper an approach to multidimensional magnetohydrodynamics (MHD)
which correctly handles shocks but does not use an approximate Riemann solver is
proposed. This approach is simple and is based on control volume averaging with a
staggered grid. The method builds on the older and often overlooked technique of
on each step taking a fully 3-D Lagrangian step and then conservatively remapping
onto the original grid. At the remap step gradient limiters are applied so that the
scheme is monotonicity-preserving. For Euler’s equations this technique, combined
with an appropriately staggered grid and Wilkins artificial viscosity, can give results
comparable to those from approximate Riemann solvers. We show how this can
be extended to include a magnetic field, maintaining the divergence-free condition
and pressure positivity and then present numerical test results. Where possible a
comparison with other shock capturing techniques is presented and the advantages
and disadvantages of the proposed scheme are clearly explained.c© 2001 Academic Press
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1. INTRODUCTION

Over the past 20 years approximate-Riemann-solver-based algorithms for solving hy-
perbolic systems of equations have proven both simple and robust. In MHD studies there
is a growing reference list of multidimensional Riemann-solver-based numerical schemes.
An early example by Brio and Wu [1] demonstrated the power of such a scheme for 1D
problems and later such techniques were shown to extend well to TVD schemes [2]. In more
than one dimension approximate Riemann solvers have been devised which maintain the
magnetic field divergence-free condition [3, 4]. This list is by no means complete and other
examples can be found in [1–3]. With this background it may seem unusual to be developing
new schemes which are not based on an approximate Riemann solver and all of the benefits
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that such an approach brings. This introduction explains the background problems which
led us to reconsider Lagrangian remap codes and sets the scene for later sections which
discuss in detail the choice of algorithm, its testing, its advantages and disadvantages.

The primary motivating factor in writing this code was that it should be easily adaptable
to a variety of problems in solar coronal physics. While having broad applicability (see
later tests), it is in this niche that the benefits of the current approach are most clear.
The corona is dominated by its magnetic field but observed optically. The corona is also
highly dynamic with current sheets and MHD shocks. For comparison with observations
simulations must therefore give accurate temperature predictions but be capable of handling
shocks. This presents a problem which applies to any method which solves the equations
in conservative form, including Riemann-solver-based schemes. By solving for the total
energy such approaches conserve energy to machine precision. This is of course a good
thing on its own. However, this does mean that the pressure must be found by subtracting
the magnetic and kinetic energy from the total energy. In the low-beta plasma of the solar
corona the magnetic energy density is typically 102 to 103 times larger than the thermal
energy density. For a plasma beta, defined as the ratio of thermal pressure to magnetic
pressure, of 10−3 this means that a 0.1% error in the magnetic field leads to a 200% error
in calculating pressure and temperature. While one could argue that for such low betas the
plasma pressure has little effect on the evolution this does not help if, as is often the case,
it is an accurate estimate of the temperature which one wants. This becomes particularly
important if one needs to find ionization levels or thermal conductivities which are sensitive
to the local temperature. There is a pragmatic solution to this problem proposed by Balsara
and Spicer [5] but unfortunately this is ignored in most Riemann codes. This involves
using an additional equation to update the pressure. The error in the temperature is then
determined by the scheme’s truncation error and not the difference of two large terms.
Balsara and Spicer [5] use flags to determine when to use the pressure from the extra
equation or that calculated from the conservative form. The approach adopted in Lare3d
can therefore be viewed as not enforcing exact energy conservation, although the error is
of course still bounded and convergent with other finite difference errors, in order to get an
accurate and physical prediction for the temperature.

Any approach which does not depend on a characteristic decomposition of the equa-
tions also benefits from freedom in the choice of equation of state (EOS). While arbitrary
equations of state can be accommodated in Riemann-solver-based schemes, the success of
such approaches for table lookup EOS (for example, the Los Alamos SESAME database
[6]) where the decomposition cannot be achieved analytically is not clear. However, this
is a simple procedure to adopt in the Lagrangian remap scheme described in this paper.
Non-hyperbolic terms, such as viscosity and resistivity, can be included in most schemes
without too much difficulty and in the present scheme such terms are simply added into
the Lagrangian step; the remap is purely geometrical and contains no physics. If large vis-
cosity or resistivity are included then a more efficient approach would be to use simple
finite differences as in these cases any shocks would be diffuse anyway. In the solar corona
and many astrophysical plasmas, the viscosity and resistivity are so low that the aim is to
include the minimum possible diffusion. In such circumstances shock-capturing techniques
of some sort are always needed as the gradients present will still cause Gibbs’s overshoot
with finite difference schemes. Indeed, there is a strong case for always including artificial
viscosity, i.e., viscosity which is only present at shocks and goes to zero as the resolution is
increased in smooth regions, to avoid known numerical problems with upwind-based shock
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schemes (see [7] for details). Such an approach has been adopted in MHD Riemann codes
(see [8], for example) but such schemes will still have difficulty with low-beta simulations
if accurate estimates of temperature are required. Some additional terms, such as the Hall
term in Ohm’s law, change the characteristics of the problem and their inclusion is cumber-
some in a Riemann code but straightforward in codes such as presented here or other shock
schemes which do not rely on characteristic decomposition, e.g., TVD Lax–Friedrichs as
in [9]. A further advantage of the current scheme is the ease with which it can be adapted
to include multimaterial interface tracking as described in [10].

The problem we address in this paper is therefore to devise a scheme that can handle
shocks in ideal MHD but is not tied to a Riemann solver or conservative form. The hope is
then to have a core code which can easily accommodate extra physics without sacrificing
shock resolution or energy conservation. In attempting to do this we have returned to the
scheme originally devised by van Leer [11]. This was based on taking a Lagrangian step
and then conservatively remapping back onto the original Eulerian grid. Limiters were
applied at the remap step to ensure monotonicity and the Lagrangian step used a Riemann
solver. Following this paper most research was directed at schemes which abandoned the
Lagrangian step and concentrated on the approximate Riemann solver. Here we take the
opposite approach and keep the Lagrangian remap scheme but abandon the Riemann solver.
For Euler solvers this is not a new idea. Indeed the earliest examples, such as used by Noh
in the CEL code [12], predate van Leer’s paper. A complete history and bibliography of
such work can be found in Benson’s review article [13]. One other noteworthy paper which
discusses Lagrangian remap schemes must also be mentioned. This is the review article
by Woodward and Collela [14] which used the BBC Lagrangian remap code in a set of
comparison tests. In these tests the BBC code performed rather badly, actually giving worse
results than FCT schemes. This has somewhat dented the credibility of Lagrangian remap
schemes. We will show later in this paper that the algorithm adopted in this paper does in
fact produce results comparable to those of Riemann-based solutions and the poor results
in Ref. [14] stem from that particular Lagrangian remap scheme.

Where this paper does introduce new computational algorithms is in the inclusion of the
magnetic fieldB, viscosity, and resistivity. While none of these is in itself radical it is the
first time that all of these effects have been included in such a code. The magnetic field is
defined on a staggered grid and uses Evans and Hawley’s constrained transport model [15]
to keep the divergence of theB zero to within machine precision. A staggered grid is not
actually essential for keeping∇ ·B = 0, as was demonstrated by Peterkinet al. [16], but
the staggering greatly simplifies the spatial centering of the scheme, as will become clear
later. We should also point out that the paper by Peterkinet al. [16] is also a Lagrangian
remap code but did not include viscous or resistive effects and was not tested on MHD shock
problems. Artificial viscosity is based on the form of viscosity presented by Wilkins [10].
Resistivity is split into two parts: an artificial resistivity similar to the artificial viscosity
and a user-specified resistive term.

The scheme outlined in this paper, i.e., a Lagrangian step followed by a Van Leer limited
remap, has great similarity to the arbitrary Lagrangian–Eulerian (ALE) codes. Indeed the
present scheme can be viewed as a sort of ALE scheme. It is therefore important to assess
the current scheme against the background of published ALE codes. In ALE codes one
splits the time update into a Lagrangian step, as here, and then a remap onto a new grid
before the next time step. Actually ALE codes do not have to remap every step and can
leave remapping until the Lagrangian grid becomes too distorted or some other criterion
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is satisfied. Note, however, that this remap is not necessarily back to the original grid, as
is the case here, but to any arbitrary grid. In this context the current scheme is an ALE
scheme in which the remap is not to a general grid but to the original Eulerian grid. Details
of ALE codes for fluid dynamics can be found in Hirt [17] and Brackbill and Pracht [18].
The greatest difference between the current scheme and these references is in the nature
of the remap. Here this is done using van Leer piecewise linear reconstructed data. This is
vital if code is to accurately resolve shocks. For example, the shock problem in Fig. 4a of
[17] is a weak shock with 60 zones in total and approximately 10 zones across the shock.
This compares with the current scheme which resolves the shock with just three zones
(see Fig. 2 of this paper). In 3D, ALE codes which rely only on viscosity to resolve shocks
would require around 33 times more grid points to achieve the accuracy of a shock-capturing
scheme. This remains true for ALE codes extended to MHD such as that in Ref. [19]. The
strength of ALE schemes lies in their ability to adapt the grid without the defects of full
Lagrangian codes, not in their treatment of shocks. The reverse is true for the current scheme.
Although the scheme in this paper is a variant of an ALE code our desire to test the shock
capturing properties of our scheme means that comparison with more conventional ALE
schemes would be inappropriate as these were not designed with shock treatment as the
primary goal. Instead we compare results with codes which also directly attempt to handle
shocks, such as approximate Riemann solvers, as this is a more fair comparison of like with
like.

Section 2 contains a description of the code. Test results from the code are then presented
in Section 3. We have chosen a set of tests which are well established in the literature and
in particular have chosen the same initialization used in Ref. [4], as this paper contains the
largest set of quantified tests. The conclusions and final comments are in Section 4 with
details of the finite difference equations in Appendix A and less common aspects of the
code moved to Appendix B and C.

2. THE Lare3d CODE

The full version of this code solves the resistive MHD equations in 3D Cartesian geometry.
The code is freely available to anyone by contacting the authors by email. In order to simplify
the description of each of the steps in the code this section is split into subsections each of
which deals with one of the main features. An explicit description of the finite difference
equations can be found in Appendix A.

2.1. The Model Equations

Here we introduce the normalized MHD equations in the form they are used in the code.
For reference we also introduce the terminology used later in the paper when discussing
Riemann problems in ideal MHD. Adopting standard normalization the equations of resis-
tive MHD can be written in Lagrangian form as

Dρ

Dt
= −ρ∇ · v, (1)

Dv
Dt
= 1

ρ
(∇ × B)× B− 1

ρ
∇P, (2)
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DB
Dt
= (B · ∇)v− B(∇ · v)−∇ × (η∇ × B), (3)

Dε

Dt
= − P

ρ
∇ · v+ η

ρ
j 2, (4)

where j = ∇ × B is the current density,v is the velocity, P is the thermal pressure,
ε = P/ρ(γ − 1) is the internal energy density (γ = 5/3 is the specific heat ratio),ρ is
the mass density andη is the resistivity. These equations are also supplemented by the
condition∇ ·B = 0 which is an initial constraint for the differential equations but must be
enforced explicitly in any numerical scheme. A key dimensionless parameter in MHD stud-
ies is the plasma beta defined as the ratio of thermal to magnetic pressure; i.e.,β = P/B2.
Viscous effects will be discussed in a later section.

One of the advantages of the current approach is that the Lagrangian step is fully three-
dimensional; i.e., there is no Strang splitting imposed on this step. This is particularly
important for updatingρ, as Eq. (1) is not used in practice. Instead, the density change is
related directly to volume changes using mass conservation. In particular, if a plasma fluid
element is initially at a pointX = (X1, X2, X3) and moves to a pointx = (x1, x2, x3) then
this new pointx is a function of the old positionX and of time. This implies that the change
in element length is given by

dxi = ∂xi

∂Xα
d Xα, (5)

with summation convention onα. We then have that

ρ = ρ0

1
, (6)

whereρ0 is the original density and1 is the determinant of the Jacobian transformation
matrix,

1 = ∂(x1, x2, x3)

∂(X1, X2, X3)
=

∣∣∣∣∣∣∣∣∣
∂x1
∂X1

∂x2
∂X1

∂x3
∂X1

∂x1
∂X2

∂x2
∂X2

∂x3
∂X2

∂x1
∂X3

∂x2
∂X3

∂x3
∂X3

∣∣∣∣∣∣∣∣∣ . (7)

When dealing with control volumes using Eq. (6)1 is the ratio of the final volume to
the initial volume.1 appears in the control volume averages of most quantities and in this
code is evaluated as

1 = 1+ (∇ · v) dt, (8)

where the divergence is evaluated on the Eulerian grid. This is second order accurate since
if we consider the change of position,

x1(X, t) = X1+
∫ dt

0
vx(X1, X2, X3, t) dt. (9)

Taking a Taylor series forvx about the original positionX and then expanding any remaining
time dependence aboutt = 0 gives

x1 = X1+ vxdt + ∂vx

∂X1
vxdt2+ ∂vx

∂X2
vydt2+ ∂vx

∂X3
vzdt2 (10)
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with x2 and x3 similarly defined. Taking partial derivatives of these with respect to
(X1, X2, X3) allows us to expand the Jacobian matrix with each term accurate to second
order,

1 =

∣∣∣∣∣∣∣∣∣
1+ ∂vx

∂X1
dt ∂vy

∂X1
dt ∂vz

∂X1
dt

∂vx
∂X2

dt 1+ ∂vy

∂X2
dt ∂vz

∂X2
dt

∂vx
∂X3

dt ∂vy

∂X3
dt 1+ ∂vz

∂X3
dt

∣∣∣∣∣∣∣∣∣ . (11)

This gives

1 = 1+
(
∂vx

∂X1
+ ∂vy

∂X2
+ ∂vz

∂X3

)
dt + O(dt2), (12)

1 = 1+ (∇ · v) dt + O(dt2); (13)

hence Eq. (8) is second order accurate and Eq. (6) is used in preference to a finite difference
representation of Eq. (1). Relating density changes to volume changes and using those
volume changes consistently elsewhere in the code also guarantees exact conservation of
mass.

The update procedure outlined later requires the Lagrangian equations for the control
volume averagedB field and the flux. These are derived from Eq. (3) and are

D

Dt

∫
Bi dτ =

∫
vi B · ds−

∫
[∇ × (η∇ ×B)] i dτ, (14)

D

Dt

∫
B · ds= −

∫
ηj · dl, (15)

where integrals in Eq. (14) overτ andds refer to integrals over the volume of a control
volume and its surface. Integrals in Eq. (15) overdl refer to line integrals around the surface
integrated over in theds integral.

While the above equations are the complete set needed to explain the algorithms used
in Lare3d here we also present some standard equations from approximated Riemann
solver theory. This is simply to give a convenient reference point for later discussions. To
keep the presentation brief we simply use a 1D version of a non-TVD limited scheme.
Details can be found in, for example, Ref. [2]. Representing the ideal MHD equations, i.e.,
Eqs. (1)–(4), withη = 0, in conservative form we have

∂U
∂t
+ ∂F(U)

∂x
= 0. (16)

Then updating the cell-averagedUi is achieved by

Un+1
i = Un

i −
1t

1x

(
Fi+1/2− Fi−1/2

)
, (17)

Fi+1/2 = 1

2
[F(UL )+ F(UR)] − 1

2

∑
αk|λk|r k, (18)
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wherer k are right eigenvectors of the Jacobian matrix∂F
∂U , λk are the eigenvectors, andαk

are the coefficients in the expansion

UR − UL =
∑

k

αkr k. (19)

Throughout these equationsUR refers to the state on the right of the interface andUL the
state on the left.

2.2. The Grid

The variables are staggered on a computational cell as shown in Fig. 1. All scalars are
defined at the cell volume center.B-field components are staggered onto cell faces so that
∇ ·B = 0 can be maintained with the Evans and Hawley constrained transport [15]. All
velocity components are defined at the cell vertex. The velocities must be staggered with
respect to bothB and the pressure to avoid checkerboard instabilities. This can be satisfied
by defining the velocities at cell edges or the cell vertex. Defining all velocities at the same
point leads to a single velocity control volume at the remap stage and a more compact code
and is therefore the choice adopted here.

2.3. The Lagrangian Step

The Lagrangian step is a simple predictor–corrector scheme. Predicted values are found
from an Euler step with timestepdt/2. Then conservation of mass in Lagrangian control
volumes is used to simplify the time-centered Lagrangian source terms by evaluating deriva-
tives on the original Eulerian grid (see Appendix B for details). The end result is a second
order scheme, both in time and space, which is fully three-dimensional and does not use
conservative form. There are two complications in this step: the update of the magnetic field
and artificial viscosity.

FIG. 1. The position of primary variables defined on a 3D computational cell.
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Concentrating first on theB field update withη = 0 we note that Eqs. (14) and (15)
are particularly simple in this case. Equation (15) is just Alfv´en’s theorem for nonresistive
MHD; i.e., the magnetic flux through an area moving with the plasma is constant. Also, as
the remap step (see Section 2.4) deals only with magnetic flux, all we need at the end of the
Lagrangian step is the magnetic flux through the control volume faces. Whenη = 0 this
is simply the flux at the start of the Lagrangian step and is trivially found by multiplying
the B field components by the area of the appropriate Eulerian cell face. The corrector
step update of Eq. (2) does require the time-centered magnetic field force(∇ × B)× B =
−∇B2/2+ (B · ∇)B. Here it is desirable to haveB2, the magnetic pressure, defined at the
same place as the thermal pressure,P. This is achieved easily by using Eq. (14) as an equation
to update the control-volume-centeredB field from the cell-face magnetic fluxes. Thus in
the Lagrangian phaseBn is face centered,Bn+1/2 is volume centered, andBn+1 is not needed
at all.

The effectiveness of Lagrangian steps with artificial viscosity can be most clearly seen
at the theoretical level by returning to Eq. (18). Final proof of the effectiveness will of
course be presented later in the form of numerical tests. Equation (18) is capable of treating
shocks due to its direct handling of discontinuities as the jumps across the characteristics
of the linear problem. It is this feature which is intrinsically difficult to include as artificial
viscosity in Eulerian-based finite difference codes. The great advantage of a Lagrangian
step is that the fluxes in Eq. (18) are all zero except for the velocity. The terms1

2

∑
αk|λk|r k

in Eq. (18) are then precisely of the same form as real viscous forces applied to the velocity
update. Put simply, in a Lagrangian step all that one needs to update is the velocities, or
equivalently the position of the cell vertices, and all other quantities are found from those
using conservation of mass and magnetic flux. This is not true of artificial viscosity applied
to an Eulerian code where the care in updatingρ which is implied by Eq. (18) is not
guaranteed by the difference scheme. This is the main reason artificial viscosity applied in
a Lagrangian remap code is more effective than artificial viscosity applied in an Eulerian
scheme.

The actual form of the artificial viscosity used in these tests is taken from Wilkins [10].
This is particularly simple in that it is a scalar viscosity; i.e.,

q = c1ρcf L|s| + c2L2ρs2. (20)

In this formulacf is the local fast mode speed, not the sound speed as would be appropriate
for simple gasdynamics.L ands are the grid length and the strain rate, both measured in
the direction of the acceleration. This approach preserves shock structure moving obliquely
across the grid. More complex forms of artificial viscosity do exist; see e.g., Ref. [20], with
tensor viscosities. Our original intention had been to use this simple form just to get the
code up and running before moving to more complex approaches. However, we found that
for the tests presented here the simple Wilkins form was perfectly adequate and we have not
“upgraded.” Forms of artificial viscosity simpler than Wilkins, e.g., standard von Neumann
viscosity applied in each direction separately, do, however, fail in multidimensional tests.
The important features of Wilkins viscosity which must always be correctly included are
that it is positive heating and does not apply viscosity tangential to a shock front. Throughout
this paper we usec1 = 0.1 andc2 = 1.0 unless otherwise stated.

For MHD shock problems the above viscosity-based approach does handle shocks cor-
rectly. However, we have found thatc1 ' 0.8 is required to guarantee that there is no
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overshoot. This leads to solutions that are more diffusive and also reduces the timestep
through the CFL condition. To avoid this we apply artificial resistivity through Eqs. (14)
and (15). The above discussion has demonstrated that there are good theoretical reasons
for artificial viscosity to be effective in a Lagrangian step. Furthermore, the specific form
of viscosity, Eq. (20), can be justified as the limiting form of the gasdynamical jump con-
ditions (see derivation of Kurapatenko in Ref. [10]). Unfortunately, there seems to be no
such derivation for choices of artificial resistivity. Our attempts at such a derivation have
also been unsuccessful and we have resorted to a pragmatic approach for the choice of
resistivity. The conditions we imposed were that this resistivity must be positive heating
and vanish as the resolution increases, except at discontinuities. From the forms we have
tried the simplest prescription which satisfies these constraints is settingη = v2

A1t , where
vA is the local Alfvén speed. Furthermore only the perpendicular current is used with this
anomalous resistivity in Eqs. (14) and (15). In all of the test results presented later the ohmic
heating quoted refers to the heating due to this form of resistivity. Equation (15) is updated
in the same way as Eq. (3), which is another simple application of the Evans and Hawley
constrained transport method of keeping∇ ·B = 0 [15].

2.4. The Remap Step

The remap of variables from the Lagrangian grid back onto the original Eulerian grid is
done in one-dimensional sweeps. These are Strang-ordered and are the only part of the code
which is not fully three-dimensional. While one would like a fully 3D code this procedure
at least has the advantage of all of the physics being handled in a fully multidimensional
way in the Lagrangian step. The remap step is a geometrical step designed to maintain
monotonicity. At this stage it is possible to build two- or three-dimensional information
into the gradient calculations but to date we have only implemented separate 1D sweeps.
The remap is performed in each direction by simply following van Leer’s original algorithm
[11] using Lagrangian variables to remapρ and then mass coordinates to remapv andε.
The magnetic flux is remapped using the standard∇ ·B-preserving scheme but is now
applied to a remap as opposed to an Eulerian advection. The changes needed to convert flux
advection into a remap are trivial. In all remaps we use the third order estimate of gradient
suggested by Youngs [21] and limiting procedure Eq. (101) from [11]. The Lagrangian
step is only second order accurate, so there is no need to use a third order accurate initial
estimate of gradients in the remap step. However, this costs nothing computationally and
we found that for simple 1D wave problems it slightly reduces the numerical dissipation.
As a result we have retained the third order scheme because it costs nothing, does no harm,
and occasionally helps in simple problems.

The scheme for remapping uses mass coordinates wherever possible. This conserves
mass, internal energy, and momentum to machine precision. However, in this form it does
not conserve kinetic energy. This is only significant at shocks where the limiters flatten
gradients in the remap step. The loss of total energy at shocks can weaken them and
therefore a procedure for correcting this is needed. Such techniques have been used before,
although not in the form used here, and details and references can be found in Section 3.6
of Benson’s review article [13]. The precise kinetic energy remap scheme used here is
explained in Appendix C . Thus the combined Lagrangian remap step is energy-conserving
for Euler’s equations. The same technique applied in Appendix C could also be extended
to magnetic energy but at present this has not been implemented. This is not a problem
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for the tests presented here and energy conservation will be reported later with each of the
tests. Note that the properties of the scheme mean that these energy errors can always be
identified as errors in magnetic field energy.

3. NUMERICAL TESTS

3.1. 1D Euler Equation Riemann Problems

We begin this catalogue of numerical tests with two tests of the code solving Euler’s
equations only. These are both of historical interest and are included here to clarify a few
points raised in the Introduction. Since the core idea of this code is to take the basic scheme
of van Leer’s original paper [11] and replace the Riemann solver with an artificial viscosity
it is worth returning to the original Sod’s problem used by van Leer as a test. Figure 2
shows the result for Sod’s problem, having the same initial conditions, etc., as in Ref. [11],
both with viscosity (solid line) and with zero viscosity (asterisks). Note that removing the
Riemann solver from van Leer’s algorithm and replacing it with a predictor-corrector finite
difference scheme only introduces a small overshoot behind the shock. This is removed when
viscosity is included. This demonstrates two main points: Sod’s problem is not particularly
demanding and the Lagrangian remap scheme is clearly far more robust at handling shocks
than Eulerian finite difference schemes. ALE codes which do not use van Leer remapping,
or an equivalent, are also less accurate at treating shocks (see Fig. 4a in Ref. [17]). This
also demonstrates, albeit indirectly, the importance of using a limited gradient in the remap
phase. It is this, along with the choice of artificial viscosity and staggered grid, which
distinguishesLare3d from conventional ALE schemes.

The next Euler equation solver test was for interacting blast waves. This was taken from
Woodward and Collela’s review article [14]. In this review tests were presented which
showed an example of a Lagrangian remap code (BBC) performing rather badly. We repeat
this test to show that this is not true of theLare3d code and also to show that such interacting
strong shocks present no difficulty. This 1-D problem is initialized in a 0≤ x ≤ 1 domain
with reflecting ends andρ = 1, v = 0. The shocks are initialized by the pressure with
P = 1000 forx < 0.1, P = 100 forx > 0.9 andP = 0.01 elsewhere. Figure 3 shows the

FIG. 2. Numerical solution to Sod’s problem for comparison with results in van Leer [11]. The solid line is
the result with viscosity the symbols are the result with zero viscosity.
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TABLE I

Interacting Strong Shock Convergence Tests

N Time steps ε(4800) ε(9600)

200 421 0.136 0.141
400 853 0.078 0.082
600 1283 0.053 0.058

1200 2576 0.026 0.029

density att = 0.038 for the region 0.5≤ x ≤ 1 for two resolutions (200 and 1200 zones)
for comparison with the results in Ref. [14]. Assessing these results by eye shows that they
are comparable to the results from the MUSCL scheme used in Ref. [14]. To quantify this
we have calculated

ε = 1

N

N∑
i=1

∣∣ρi − ρacc
i

∣∣, (21)

whereρacc
i is an accurate answer. In Ref. [14] a special adaptive code was used to find the

exact solution to use in Eq. (21). We do not have such a code and have therefore used the
results from 4800 and 9600 zones as estimates forρacc

i and in both cases have calculatedε
for a range of grid sizes. These are presented in Table I. In this tableε(4800) is the evaluation
of Eq. (21) using 4800 zones forρacc

i andε(9600) for the same with 9600 zones. All results
were produced with a Courant number of 0.8 andLare3d requires slightly more steps than
equivalent codes in Ref. [14] due to the inclusion of the viscosity coefficients in the CFL
condition.

Assuming that theLare3d converges to the correct answer these figures show that the
current Lagrangian remap scheme, with Wilkins artificial viscosity, gives results as good as
those from the MUSCL scheme in Ref. [14] (the estimate ofε on a 1200 grid for MUSCL
was 0.04 in Ref. [14]). The solid lines on Fig. 3 show overshoots at the end of rarefaction
fans (in this case atx = 0.59 andx = 0.76) which means that the estimates in Table I
will be out by a small amount and biased in favor of the current scheme. However, even
allowing for this the results shown are better than those for the FCT schemes but not as good
those for as the PPM-based algorithms. The better performance of the PPM schemes is not
surprising as this is a 1D problem with strong rarefaction waves. We postpone consideration
of execution speed compared to other schemes until later.

3.2. 1-D MHD Riemann Problems

The most commonly tested 1D MHD Riemann problem was originally set up by Brio
and Wu [1]. This shock tube test is repeated here with left state(ρ, By, P) = (1, 1, 1),
right state(ρ, By, P) = (0.125,−1, 0.1), andBx = 0.75. All other variables are initially
zero and our solution differs from that in Ref. [1] in that we takeγ = 5/3. The numerical
solution att = 0.1 with 800 cells forρ, vx, By andvy is shown in Fig. 4. This allows direct
comparison with the same test in Refs. [1, 2, 9].

What is clear from Fig. 4 is thatLare3d handles the MHD shocks as well as the TVD–
MHD codes. Since energy is only conserved exactly for Euler problems (see Appendix B)
there is an energy error in these results. Att = 0.1 energy is conserved to within 0.09% and
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FIG. 3. Results for the interacting blast wave problem at two resolutions. Crosses on the left figure show the
result with 200 points while crosses on the right figure are for 1200 points. The solid line on both plots is from a
run with 4800 points.

FIG. 4. Solution of the Brio and Wu MHD shock tube problem but withγ = 5/3 and 800 cells. Snapshots
are taken att = 0.1.
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FIG. 5. Repeat of the test from Fig. 4 but with the shock propagating diagonally across an 800× 800 grid.

the accumulated artificial viscous and ohmic heating contributions are both 0.37% of the
total energy. Note that artificial viscosity converts kinetic energy into heat, in total 0.37% of
the total energy, but does not contribute to the energy error. It conservatively converts energy
from kinetic to thermal. The same is true of the resistive term which converts magnetic field
energy into heat conservatively.

Figure 5 is a repeat of the Brio and Wu MHD shock tube problem with the same setup
as in the previous paragraph, but now on a 800× 800 grid with the shock propagating
diagonally across the domain. While this uses a 2D grid it is still essentially a 1D problem
and tests the codes’ ability to evolve shocks obliquely across the grid. The only discernible
differences between these plots and those of Fig. 4 are in the slight change in the treatment
of the compound shock and slight overshoots at the end of rarefaction fans atx = 0.425
andx = 0.45.

3.3. Orszag–Tang Vortex

The Orszag–Tang vortex problem has been used in numerous papers [3, 4, 22, 23] as a 2D
test for MHD codes. Here we use the same normalization as in Ref. [4]. The advantage of
this choice of normalization is that Ref. [4] supplies quantitative estimates of the accuracy
of schemes, other papers leaving the success of the Orszag–Tang vortex test to a qualitative
or aesthetic judgment. Following Ref. [4] we use three resolutions for theN × N grid
with N = 50, 100, and 200. The relative numerical error for a variableu is defined as the
L1 norm of the error relative to an accurate solution. The accurate solution here was taken
as that obtained from a run with a 400× 400 grid and the accurate solution was obtained
on the course grids by control volume averaging as described in Ref. [4]. Using the same
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TABLE II

Average Errors in the Orszag–Tang Test

N = 50 N = 100 N = 200

δ̄(t = 1) 0.0344 0.0157 0.0052
δ̄(t = 3.14) 0.1494 0.0792 0.0308
1ε(t = 3.14) 1.4 0.57 0.23

code to define the accurate solution in the calculation of errors does introduce a bias in
favor of the current scheme. This is especially true as the high-resolution reference solution
is only double the resolution of theN = 200 result. The same procedure is adopted in
Ref. [4], with which we are making comparisons, except that in Ref. [4] an average of two
N = 400 solutions is used to alleviate some of the biasing. Thus while the error estimates
presented here forN = 50 and 100 should be accurate, that forN = 200 is likely to be
overly optimistic. However, without an analytic solution it is not possible to estimate this
bias, or indeed that in Ref. [4], and we simply proceed with caution when looking at the
details of the error estimates forN = 200. Table II shows the average errors for this test at
t = 1 andt = 3.14. The averaged error,̄δ, is the average of theL1 norm of all primitive
variables and1ε is the percentage energy error. For the same test problem in Ref. [4] the
bestδ̄ on aN = 200 grid was 0.0026 att = 1 and the best att = 3.14 was 0.0300.

FIG. 6. Pressure distribution for the Orszag–Tang problem att = 3.14. The computational box has 200× 200
grid points.
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FIG. 7. 1D pressure distribution for the same problem as Fig. 6 along a cut aty = 2.686 (upper panel) and
y = 1.963 (lower panel).

For comparison with results in Ref. [22], Fig. 6 shows a contour plot of the pres-
sure att = 3.14 with 30 contour lines. The time oft = 3.14 corresponds tot = 0.5 in
the normalization used in Ref. [22], so Fig. 6 can be compared directly with Fig. 10 in
Ref. [22]. Figure 7 shows cuts through the pressure distribution at points equivalent to those
in Fig. 11 of Ref. [22]. All of this quantitative and qualitative evidence shows that the present
Lagrangian remap scheme performs as well as Riemann-solver-based schemes once shocks
and discontinuities form in the Orszag–Tang vortex test, i.e., at timet = 3.14. However,
Table II also shows a somewhat surprising feature. While the errors on the 200× 200 grid
at t = 3.14 are as low as those for the best schemes tested in Ref. [4], the results att = 1
are comparable to those of the worst code tested. Thus whileLare3d is good at treating
shocks it is not as good for smooth flows when compared to approximate Riemann solvers.
This can be clarified by finding the convergence of the average errors fromLare3d for a
simple wave.

3.4. Circularly Polarized Alfv́en Waves

Circularly polarized Alfvén waves are an exact solution to the full nonlinear equations of
ideal MHD in a uniform medium. To allow direct comparison with the results in Ref. [4] we
initialize a periodic box with an Alfv´en wave propagating at an angleα = 30◦ to thex-axis.
The normalization and initial conditions are the same as in Ref. [4]. For this setup at time
t = 1 the flow should have returned to its initial state. Table III shows the averaged errors,δ̄,
calculated from thev⊥,vz, B⊥, andBz variables. These errors are at timet = 5 and are based
on comparison of the result att = 5 with that att = 0 for the same resolution. As a result
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TABLE III

Average Errors for Alfv én Waves

N = 8 N = 16 N = 32 N = 64

δ̄ 1.966 0.633 0.142 0.035
Amplitude error 0.014 0.055 0.005 0.0013
Phase error 2.597 0.663 0.138 0.033
|vA| error 0.072 0.018 0.0028 0.00086

they do not have the biasing discussed in the previous section and can be compared directly
with results in Ref. [4]. Also shown are the results from an FFT of the initial and final data
which was used to find the amplitude error (defined as|a(t = 0)− a(t = 5)|/a(t = 0),
wherea(t) is the amplitude), the phase error in radians, and the error in the Alfv´en phase
speed calculated from that phase error. Note that this is the error in the phase speed in the
direction of propagation, not along thex-axis.

The average error, phase error, and|vA| error all show second order convergence. The odd
behavior of the amplitude error on coarse grids is due to these grids not actually representing
a(t = 0) accurately. The dominance of phase error over amplitude error can be clearly seen
from Fig. 8. The conclusion from these tests is that the present scheme cannot accurately
find the phase speeds on coarse grids. The code has to recover this from finite differences

FIG. 8. The orthogonal component of the magnetic fieldB⊥ = (
√

3By − Bx)/2 for the circularly polarized
Alfv én problem. The initial condition is shown as a full line and the result att = 5 as dashed line for four
resolutions.
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TABLE IV

Average Errors in the Rotor Test

N = 50 N = 100 N = 200

δ̄ 0.1421 0.0711 0.0283
1ε 0.51 0.28 0.15

in the Lagrangian step unlike approximate Riemann solvers where the characteristic speeds
are included automatically (see Eq. (18)). This may also explain why the errors in the
Orszag–Tang test are comparatively poor att = 1. Shock propagation is, however, handled
accurately, as witnessed by the accuracy achieved att = 3.14 in the same test. If the need to
resolve wave speeds accurately were paramount for a particular problem then the solution
would be to replace the Lagrangian step with a higher order version. The scheme would
still remain second order due to the remap but the Lagrangian phase would then accurately
resolve the phase speeds. Even with the phase speed errors at their current levels it is still
not obvious whether this isphysicallyworse than the results presented in Ref. [4], where
there is no phase error for the best codes but all codes strongly damp the wave on the coarse
grid. Indeed, the best codes in Ref. [4] show an amplitude error of approximately 0.7 on
an 8× 8 grid compared to an amplitude error of 0.014 for the same test usingLare3d. Put
crudely the question is: in any particular simulation is it better to have wave energy arrive
early or on time but with a reduced energy density?

FIG. 9. Density, thermal pressure, Mach number, and magnetic pressure att = 0.15 for the rotor problem.
The solution was obtained on a 400× 400 grid and the figure shows 30 contourlines.
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3.5. Rotor

This problem is taken from Ref. [4] and is identical to the first rotor test withP = 1 from
that paper. Table IV shows the usual table of averaged errors and energy conservation at time
t = 0.15. Figure 9 shows contour plots of density, pressure, Mach number, and magnetic
pressure for a 400× 400 grid.

This problem converges with first-order accuracy as expected and once again the results
are comparable with those from approximate Riemann-solver-based schemes. The best
result obtained for this test on anN = 200 grid from Ref. [4] was̄δ = 0.0276 att = 0.15,
although once again one needs to be cautious in comparing these numbers, as they were
produced with different small (but unquantifiable) biases as discussed in Section 3.3. As in
previous sections this is not ideal but without a standard reference solution for 2D MHD
shock problems there is little alternative. As a result we have chosen to follow the procedure
adopted in Ref. [4], as this was the first paper to attempt a systematic quantitative set of
convergence tests for 2D MHD problems.

3.6. Low Beta MHD Tests

This section demonstrates the benefits of the current scheme compared to traditional
schemes based on the conservative form for low beta plasma tests. Comparisons have
been made between results fromLare3d and a code which follows exactly the prescrip-
tion set out for the TVD Riemann scheme in Ref. [23]. Using this TVD scheme repro-
duces the figures produced byLare3d in the paper thus far. Up until this point the aim
has been to demonstrate that a Lagrangian remap scheme, which abandons the conser-
vative form, can correctly handle the standard MHD and Euler shock problems. This
last section shows some of the benefits which follow from dropping the conservative
form.

The first test is a simple 1D Alfv´en pulse. Thex domain is defined in−1.5< x < 1.5
and initiallyρ = 1, Bx = 1, vy = 0.2 exp{−x2/0.01}, and all other components ofB and
velocity are zero. The specific energy density is set to 10−3 so that the plasma beta is
2× 10−3/(0 − 1). These tests are run tot = 1. Figure 10 shows the results from 300 grid
points usingLare3d and 30,000 grid points for the TVD scheme.

The reason so many more points were used for the TVD scheme in Fig. 10 is explained
in the convergence test for the TVD scheme. Figure 11 showsε from the TVD scheme with
resolutions of 300, 3000, and 30,000 grid points. The poor results from the conservative form
of the TVD scheme follow partly from the pressure, and hence specific energy density and
temperature, being derived from the difference of two large terms. Repeating theLare3d

run with 3000 grid points reproduces the same result as with 300 grid points to within a few
percent and it is theLare3d result which is the correct converged answer. The other reason
for the TVD schemes overheating the low beta plasma relates to Section 3.4. Here it was
shown thatLare3d damped the amplitude of simple waves far less than Riemann-based
schemes of equivalent order. The energy that the TVD scheme dissipates from the magnetic
field of the wave is placed into the thermal energy. Thus for a TVD Riemann scheme to
produce accurate temperature estimates in solar coronal simulations it would either have to
use around 100 times the resolution ofLare3d, or an equivalent approach, or a high-order
scheme, such as employed by ENO codes, to prevent wave damping. In practice 3D runs are
limited to about 3003 so Fig. 11 shows the scale of error in the pressure one would expect



LAGRANGIAN–EULERIAN REMAP CODE FOR MHD 169

FIG. 10. 1-D distribution ofε for the low beta Alfvén pulse test. The solid line is fromlare3d on a 300 cell
grid and the dashed line is from the TVD scheme on a 30,000 cell grid.

for such a grid; i.e., the error is the same order as the solution itself. However, in 2D and
3D runs it is more usual that conservative schemes (such as the TVD scheme used here)
will fail due to negative pressures. This is true for the Orszag–Tang vortex test, which fails
with the TVD scheme when initialized withβ = 10−3 but runs without error inLare3d.

As a final test we return to the Brio and Wu shock problem of Section 3.2. Figure 12
presents results from the same setup as in Section 3.2 but now the solid line is fromLare3d

and the points are from the TVD scheme. This confirms that both schemes produce the
same solution for this MHD shock problem.

However, as for the Orszag–Tang vortex test, the TVD scheme fails with negative in-
ternal energy if the plasma beta is reduced. Figure 13 shows the result fromLare3d of

FIG. 11. Convergence of the TVD scheme for the 1D distribution ofε on the low beta Alfén pulse test. The
solid line is for 30,000 grid points, the dashed line for 3000 grid points, and the dotted line for 300 grid points.
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FIG. 12. Solution of the Brio and Wu MHD shock tube problem but withγ = 5/3 and 800 cells. Snapshots
are taken att = 0.1. The solid line is the result fromLare3d and the points are from the TVD scheme.

FIG. 13. Solution of the Brio and Wu MHD shock tube problem but withγ = 5/3, 800 cells,ε = 10−3

throughout andBy = 5 for x < 0.5.
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setting up the standard Brio and Wu MHD shock test but then settingε = 10−3 everywhere
and increasing the initial perpendicular magnetic field component,By, for x < 0.5 from
1 to 5.

4. CONCLUSIONS

We have written and tested a Lagrangian remap code (Lare3d) for solving multidimen-
sional MHD. One of the main motivating factors in this work was to develop a flexible
code suitable for simulating events in the Solar corona. Such a code needed to be capable
of capturing shocks, accurately finding the local temperature, and allowing the inclusion of
additional nonhyperbolic physics (resistivity, viscosity, radiation, thermal conduction, grav-
ity, etc.). These requirements lead us to a Lagrangian remap scheme for the nonconservative
form of the MHD equations. The basic features of the code are

• The Lagrangian step is second order in space and time and uses mass conservation
(mass coordinates in 1D) whenever possible.
• The magnetic field is defined on cell faces and is updated with constrained transport

to keep∇ · B = 0 to machine precision.
• The Lagrangian step includes Wilkins viscosity which prevents Gibbs overshoot and

maintains shock structure for shocks moving at angles across the grid.
• The density is remapped using Lagrangian coordinates but energy and velocity use

mass coordinates.
• Even though the equations are not in conservative form the Euler part of the code

conserves energy to machine accuracy. This procedure could be extended to the magnetic
field energy but this hasn’t shown itself to be a critical issue so far.

We have performed a set of tests withLare3dwhich demonstrate its ability to handle shocks
and have compared the results of these tests with those from other shock capturing schemes.
The features of any multidimensional code are always difficult to quantify. In an attempt to
highlight these features and compare them with other schemes we include below lists of the
successes from the tests and those areas where other codes give better results. As always with
such comparisons there are grey areas where different users (depending on the application
they have in mind) may see things differently. With those words of caution we begin with
a list of the features of the tests whereLare3d did not perform as well as other codes.

1. While all of the tests in this paper were performed with the same Wilkins viscosity
it was only through experience that we have learnt to use those values. For radically dif-
ferent tests one may find that these values need changing. ThusLare3d is not as robust as
approximate Riemann solver-based codes.

2. In the 2-D Brio and Wu test (see Fig. 5) and the high-resolution strongly interacting
shock test (see Fig. 3) there is evidence of overshooting at the end of rarefaction fans. This
is not Gibbs overshoot, since it is resolved by many points and smooth, but it should not be
present in an ideal solution.

3. The Lagrangian step only finds the characteristic speeds to second order accuracy.
This causes the circularly polarized Alfv´en wave to have a numerical speed which is larger
than unity for that test and consequently gets a poor value for averagedL1 norm errors.

The first of these points is not a major problem. From low-resolution tests one will know
if the viscosity needs to be increased so that little time is actually wasted repeating full
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production runs with an assortment of values for the linear viscosity. The second point is
clearly an error in the way the code treats rarefaction fans for such test examples. We have
no explanation for why the code should be able to handle shocks well but have trouble with
smooth regions of the solution. We do, however, note thatLare3d is not alone in having
this undesirable feature (see, e.g., Fig. 5 in Ref. [9] and Fig. 13 in Ref. [24]).

The positive features ofLare3d are

1. The code does correctly handle shocks. Furthermore, for most shock tests where a
quantitative comparison is possible (Orszag–Tang vortex and rotor tests)Lare3d performed
as well as Riemann-solver-based codes. The exception to this was the 1D interacting strong
shock test where the PPM method was more accurate.

2. The scheme preserves∇ ·B= 0 to machine precision at no extra computational cost.
3. By not using the conservative form, but still correctly handling shocks, the scheme

is able to accurately find the local temperature even for low-beta plasmas such as the solar
corona.

4. For the Alfvén wave test problemLare3d showed very little damping of the wave
even on an 8× 8 grid.

5. All of the physics is contained in the Lagrangian step which is unsplit and fully
three-dimensional.

The results of Ref. [4] have shown that dimensionally split algorithms do give accurate res-
ults for the Orszag–Tang and rotor tests. Whether a clear distinction between split and unsp-
lit techniques becomes evident when source terms, radiation, conduction, etc., are included
is not clear and will have to be the subject of future investigations. The Lagrangian remap
approach adopted inLare3d does easily lend itself to the inclusion of both tensor viscosities
and interface tracking through volume fractions (see Benson’s review for details [13]).

If you already use, or are about to acquire, a Riemann-based ideal MHD shock capturing
code, should you abandon your plans and useLare3d instead? Of course not! These tests
have shown that the present scheme is as good as well-written approximate Riemann solvers
but not better. Perhaps the most surprising result of this paper is that this is possible without
using a characteristic-based method. So provided you want to solve ideal MHD problems and
you have a∇ ·B = 0-preserving approximate Riemann solver code the results in this paper
are of general interest only. However, if you wish to perform simulations of the solar corona,
or any other plasma with a beta below 0.1%, then unless you adopt a procedure similar to
that in Ref. [5] any estimates from a conservative-form-based code for the temperature will
be very inaccurate. Attempting to then calculate ionization levels or thermal conductivities
from these temperatures will inevitably lead to inaccurate results. Balsara and Spicer [5]
have shown a way of avoiding these difficulties but this approach is overlooked in the
majority of codes. If in addition to a low plasma beta one also wishes to have simulations
which are also expected to take into account complex equations of state or interface tracking
then the approach ofLare3d offers distinct advantages.

Assessment of the performance of codes, especially parallel performance, is always less
conclusive than we might like. It depends strongly on architecture, compilers, interconnects,
etc. In this case another factor is that the code was written in HPF to run typically on eight
CPU’s of a cluster of four CPU SMP machines. There is an overhead in using F90 and at
times serial speed is compromised to achieve better parallel scaling under high performance
Fortran (HPF). With these cautionary remarks noted, using a Compaq ES40 with 500-MHz
EV6 processors, 4 MB cache per CPU, and Compaq’s F90/HPF compiler, a 1922 grid test
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run of the Orszag–Tang problem took 141.6 s on one CPU, 36.1 s on all four CPUs of the
ES40, and 20.2 s on eight CPUs, i.e., two ES40s connected through Memory Channel 2
interconnect. For comparison a straight F90 coding of the TVD Riemann scheme in Ref.
[23] took 123.5 s for the same problem on one CPU. This code was not written in F90
full array notation; i.e., it avoided slower constructs needed to make HPF effective and
is therefore more clearly optimized for serial execution. For a fixed number of timesteps
Lare3d is actually faster than the TVD scheme but only by about 10%. The longer runtime
to a fixed time in the Orszag–Tang problem, even though both codes use a CFL number of
0.8, is because the artificial viscosity appears in the CFL condition inLare3d so it requires
more timesteps to reach a given fixed final time. The conclusion that we draw from these
tests is thatLare3d costs about the same, in CPU time, as an equivalent TVD Riemann
scheme. For 3D tests 10 steps with a 1283 grid took 735 s on 1 CPU, 184 s on four CPUs,
and 110 seconds on eight CPUs. This shows signs of stalling on eight CPUs but larger array
jobs have scaled linearly on a CRAY T3E up to 64 CPUs.

APPENDIX A

Details of Finite Difference Scheme

In this Appendix we present a summary of the finite difference equations used in the code.
It is intended to cover all of the detail necessary to understand the core numerical schemes.
Anyone wishing to obtain a copy of the full Fortran90 source code (actually in full parallel
HPF) can do so by contacting the authors at tda@astro.warwick.ac.uk. Figure 1 defines the
location of the primary variables on the grid. At the start of each step all of these are defined
at the same time; i.e., there is no leapfrog component. The Lagrangian step is a simple
second order predictor–corrector scheme. To distinguish the different time levels, variables
with no superscript, e.g.,v, refer to variables on the Eulerian grid at the start of the step;
variables with a star superscript are half-timestep Lagrangian predictor values, e.g.,v∗, and
variables with a superscript 1 represent the values at the end of the Lagrangian step, e.g.,v1,
and are defined on the displaced Lagrangian grid. At several points throughout the scheme
variables are needed at different locations than those defined in Fig. 1. The averaging used
depends on whether the variable is a volume average, e.g.,ρ, or a surface average, e.g.,Bx.
Since the Eulerian grid can be stretched we begin by definingcvoli, j,k as the volume of each
cell. For the set of indices(i, j, k) ρi, j,k andεi, j,k are the averages overcvoli, j,k of density
and specific energy, and are defined at the cell volume center.Bxi, j,k is thex component of
the magnetic field and is defined to be face centered on the face atxci, j,k + dxbi, j,k/2, where
xci, j,k is thex coordinate of the center of the cell anddxbi, j,k is the length of the cell in the
x direction.Byi, j,k andBzi, j,k are similarly defined, as aredybi, j,k anddzbi, j,k. The remap
stage also uses (dxc, dyc, dzc), wheredxcis the distance between the center of the control
volumecvoli, j,k and the center of the control volume atcvoli+1, j,k, and similar definitions
apply todycanddzc. All of the components of velocity are defined at the cell vertex so that
vxi, j,k is defined at the point(xci, j,k + dxbi, j,k/2, yci, j,k + dybi, j,k/2, zci, j,k + dzbi, j,k/2).
To obtain the density at the cell vertex,ρvi, j,k, we use control volume averaging; i.e.,

ρvi, j,k =
1

8cvolvi, j,k

i+1∑
l=i

j+1∑
m= j

k+1∑
n=k

ρl ,m,n cvoll ,m,n, (A.1)
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where

cvolvi, j,k =
1

8

i+1∑
l=i

j+1∑
m= j

k+1∑
n=k

cvoll ,m,n (A.2)

is the velocity cell control volume. TheB field components at the cell center are simply the
averages of the values on opposing faces. The velocity components defined on cell faces,
e.g.,vxbi, j,k are defined by averaging over the four vertex values.

Using the above conventions the predictor stage of the Lagrangian step can be broken
down into the following finite difference equations. In the remainder of this Appendix
omission of a subscript implies that all variables should be subscripted with(i, j, k). Initially
only the scheme without the resistive terms will be described and resistive effects introduced
separately at the end. This helps to emphasize the core MHD code and shows how additional
terms are added to this core solver. In reality, even in running an ideal MHD problem,
artificial resistivity must be included at shocks, but purely to make the description of the
code as clear as possible we shall define here the core code to be ideal MHD plus only
artificial viscosity. First, the thermal pressureP is defined by

P = ε(0 − 1)ρ (A.3)

and the total pressurePtotal = P + q with q defined from Eq. (20) taken directly from [10].
The predictor value of the specific energy density is then given by

ε∗ = ε − δt
2

Ptotal∇ · v
ρ

(A.4)

whereδt is the timestep and∇.v is found from

∇.v = vxbi, j,k − vxbi−1, j,k

dxbi, j,k
+ vybi, j,k − vybi, j−1,k

dybi, j,k
+ vzbi, j,k − vzbi, j,k−1

dzbi, j,k
. (A.5)

The Jacobian of the predictor Lagrangian step is then defined by

1∗ = 1+ δt
2
∇ · v; (A.6)

then

ρ∗ = ρ

1∗
, (A.7)

P∗total = ε∗(0 − 1)ρ∗ + q. (A.8)

Note that the artificial viscous pressureq is not advanced to the predictor level. To find the
predictor value for the force one must now update theB field so that the Lorentz force is
correctly time-centered. The predictorB field is cell-volume-centered and follows from the
finite difference version of Eq. (14), e.g., forBx∗ this is

Bx∗ = 1

1∗

{
Bx+ δt

dxb
[(vx Bx)x

+ − (vx Bx)x
−
] + δt

dyb
[(vx By)y

+ − (vx By)y
−
]

+ δt

dzb
[(vx Bz)z

+ − (vx Bz)z
−
]

}
, (A.9)
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where(vx Bx)x
+

means the product ofvx andBx averaged to the center of thex face at
xci, j,k + dxbi, j,k/2 and(vx Bx)x

−
is averaged to thex face atxci, j,k − dxbi, j,k/2. Similarly

(vx By)y
+

means(vx By) averaged onto they face atyci, j,k + dybi, j,k/2 etc.
We now have the predictor values of pressure and magnetic field and can therefore

calculate the vector force at the cell vertex. This is found fromF∗ = B∗ · ∇B∗ − 1
2∇B∗2−

∇P∗, where now the averaging needed to define magnetic field components at the desired
locations must now use control volume averaging, asB∗ is a volume-centered variable. The
predictor step is then completed by finding the half timestep predictor velocities defined at
the cell vertex from, e.g.,

vx∗ = vx + δt
2

Fx∗

ρv
, (A.10)

whereFx∗ is thex component of the predictor value of the vertex force.
The corrector step is now straightforward since theB field does not need to be updated.

The B field components are simply converted into fluxes using8x = Bx dyb dzb, etc.
for 8y and8z. Since the core solver is for ideal MHD, with artificial viscosity, the flux
is conserved during the Lagrangian step. The corrector step is therefore an update of the
density control volume for each cell using11 = 1+ δt∇v∗; i.e.,cvol1 = cvol11, followed
by

ε1 = ε − δt P∗total

Fx∗

ρ
, (A.11)

ρ1 = ρ

11
, (A.12)

vx1 = vx + δt Fx∗

ρv
, (A.13)

with similar equations forvy1 and vz1. Note that in the update of the specific energy
density and velocities it is the original Eulerian density that is used. This is based on
using control volume mass conservation during the Lagrangian step and is made explicit in
Appendix B, where the finer details are discussed. The final set of variables to be updated
are (dxb, dyb, dzb), which are simply calculated fromdxb1

i, j,k = dxbi, j,k + (vxb∗i, j,k −
vxb∗i−1, j,k)δt etc.

All variables have now been updated a full timestep and are defined on the Lagrangian
grid. The next stage is to remap these variables back onto the original Eulerian grid so
that the whole process can continue. The remap step is entirely geometrical and includes
no physics or time dependence. However, the monoticity-preserving property of 1D hy-
perbolic equations is built into the remap by the use of van Leer-limited piecewise linear
reconstruction. The remap is done in 1D sweeps in the usual Strang-ordered way. To ex-
plain the entire remap process it is therefore sufficient to cover just thex remap, asy and
z remaps follow exactly the same scheme. In what follows we therefore drop the( j, k)
subscripts and deal only with a 1D remap. Note that this simplification assumes that we
start with Lagrangian variables such asvx1 and end with the final fully updated variable on
the Eulerian grid, i.e.,vx(t + δt). In 3D thex remap can actually start with variables which
have, for example, been modified by ay remap and for which the output needs to be further
remapped inz. In what follows thereforevx′ refers to thex component of velocity before
thex remap andvxn+1 refers to the velocity after the remap. Hencevx′ only equalsvx1 if
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thex remap is the first after the Lagrangian step. If thex remap is not the last direction to
be remapped thenvxn+1 becomesvx′ for the next stage of the remap and so on for all other
variables.

The density is remapped conservatively so that the total mass in the cell after the remap
ρn+1dxbis equal to the mass before the remapρ ′ dxb′minus the mass from this Lagrangian
cell which overlaps the Eulerian cell ati + 1 (d Mi ) plus the mass from Lagrangian cell
i − 1 which overlaps the Eulerian celli (d Mi−1). Sinceρ ′ dxb′ = ρ dxb this becomes

ρn+1
i = ρ + 1

dxbi
(d Mi−1− d Mi ) , (A.14)

where

d Mi =
(
ρ ′i +

dxb′i
2

Di (1− ψi )

)
vx∗i δt (A.15)

and

ψi = |vx∗i |δt
dxb′i

. (A.16)

Note that in these two equationsvx∗i is the velocity of the boundary but in 3D this needs to be
replaced by the face-centered velocityvxb∗i . The variableD in this equation is the van Leer
piecewise linear, limited gradient. In this implementation the gradient is found by initially
calculating the third-order upwind gradient from the formula for a general variablef ; i.e.,

|D̄i | = (2− ψi )

3

| fi+1− fi |
dxci

+ (1+ ψi )

3

| fi − fi−1|
dxci−1

for vx′i > 0, (A.17)

|D̄i | = (2− ψi )

3

| fi+1− fi |
dxci

+ (1+ ψi )

3

| fi+2− fi+1|
dxci+1

for vx′i ≤ 0. (A.18)

The magnitude of the gradient obtained, i.e.,|D̄i |, is then limited, if need be, using the
procedure given as Eq. (101) in [11]. In the current notation this is

Di = s MAX (|D̄i |dxbi , 2| fi+1− fi |, 2| fi − fi−1|), (A.19)

where

s = sign( fi+1− fi ) if sign( fi+1− fi ) = sign( fi − fi−1),

s = 0 otherwise.
(A.20)

This then completes the remap of density andρn+1 andd Mi are stored.
The specific energy density remap follows the same basic procedure as that of the density

but the remap now uses thed Mi values to complete the remap in mass coordinates. This
builds the mass conservation into the remap of other variables and is achieved for the specific
energy density through

εn+1
i = (ε′i dxb′i ρ

′
i + dεi−1− dεi )

1

dxbi ρ
n+1
i

, (A.21)
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where

dεi =
(
ε′i +

dxbi

2
Di

(
1− d Mi

ρ ′i dxb′i

))
d Mi . (A.22)

Now Di is the van Leer-limited gradient of the specific energy density anddεi is the energy
remapped (not specific energy density) from celli to cell (i + 1).

Mass coordinates are also used to remap the velocity components, thus ensuring conser-
vation of momentum in the remap step. The only additional complication introduced for the
velocity is that the velocity components are defined at cell vertices. Since the velocity has a
different control volume than the density,d Mi andvx′i must be averaged to the appropriate
faces of the velocity control volume before the remap can start. In all other respects the
velocity remap is the same as that of the specific energy density.

The calculation of the magnetic flux to be remapped follows the same approach as that
of the density. The total flux through they face atyci, j,k + dybi, j,k/2 is unchanged during
the Lagrangian step and is given by8y = By dxb dzb, and this is remapped usingvx∗

to find the area of Lagrangian cells overlapping neighboring Eulerian cells in thex pass
of the remap. However, since the flux is defined as a face surface averaged quantity the
velocity must be defined at the edge center; i.e., in Eq. (A.15)vx∗i, j,k must now be replaced
by vxi, j,k = 0.5(vx∗i, j,k + vx∗i, j,k−1). In all other respects the calculation ofd8yi, j,k, the y
flux remapped from cell(i, j, k) to cell(i + 1, j, k), follows the calculation ofd Mi, j,k. The
∇ ·B = 0 scheme then requires that

8yn+1
i, j,k = 8yi, j,k − d8yi, j,k,

8yn+1
i+1, j,k = 8yi+1, j,k + d8yi, j,k,

(A.23)
8xn+1

i, j,k = 8xi, j,k + d8yi, j,k,

8xn+1
i+1, j,k = 8xi+1, j,k − d8yi, j,k,

etc., for the other components. Converting the fluxes back into field components then
completes the remap step and all variables are defined on the original Eulerian grid ready
for the next Lagrangian step.

The artificial resistivity can then be added in the same manner as the artificial viscosity,
i.e., calculated only at the start of the step, and the resulting heating only added intoε based
on that value. Alternatively, it can be added in a time-centered way and combined with a
real second order accurate resistive term. This is then included in the calculation of the
time-centeredε; the time-centeredB field is then used to recalculate the contribution to
heating in order to maintain second order accuracy. The time-centeredB field is also used
to evaluate the RHS of Eq. (15), which then simply updates the fluxes ready for the start of
the remap step.

APPENDIX B

Energy Conservation in the Lagrangian Step

In this Appendix we present the proof of energy conservation in the Lagrangian step
update of Euler’s equations. The generalization of this to 3D is straightforward but tedious.
For simplicity here we also assume that the grid is uniform, at the start of the Lagrangian
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FIG. 14. The position of variables defined on a 2D grid.

step, inx and y but thatdx ? dy. This proof is also valuable as it clearly shows how
conservation of mass is built into the Lagrangian update step on every possible occasion. In
1D this reduces to the usual mass coordinates of Lagrangian fluid dynamics. In 2D and 3D
the scheme is simply a staggered grid control volume approach with exact mass and energy
conservation.

We begin by defining a set of new variables.vxbi, j is thex component of the velocity
defined on the cell edge (face in 3D);ρvi, j is the density defined at the cell vertex;Mv

i, j =
ρvi, j dx dy is the mass in the velocity control volume.

See Fig. 14 for clarification of the locations on the grid. The energy calculation is per-
formed at the corrector step so superscriptsn, n+ 1/2, andn+ 1 refer to time levels. The
change in kinetic energy between levelsn andn+ 1 over the entire domain is

1K E =
∑
i, j

1

2
Mv

i, j

((
vn+1

i, j

)2− (vn
i, j

)2
)
, (B.1)

=
∑
i, j

Mv
i, j

(
vn+1

i, j − vn
i, j

)
v

n+1/2
i, j . (B.2)

From Eq. (2) with no magnetic field we get

vxn+1
i, j − vxn

i, j =
dt

2dxn+1/2 (ρvi, j )
n+1/2

(
Pn+1/2

i, j + Pn+1/2
i, j+1 − Pn+1/2

i+1, j − Pn+1/2
i+1, j+1

)
. (B.3)

Using this equation along with mass conservation in a Lagrangian cell, i.e.,

Mv
i, j =

(
ρvi, j
)n

dx dy, (B.4)

= (ρvi, j )n+1/2
dxn+1/2 dyn+1/2, (B.5)

we can regroup the terms in Eq. (B.2) containingPi, j to get∑
i, j

1K Ei, j =
∑
i, j

Pn+1/2
i, j dVi, j , (B.6)
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where

dVi, j = dt[(vxbi, j − vxbi−1, j ) dy+ (vybi, j − vybi, j−1) dx] (B.7)

and

vxbi, j =
(
vxn+1/2

i, j dyvn+1/2
i, j + vxn+1/2

i, j−1 dyvn+1/2
i, j−1

)
2dy

. (B.8)

In these expressionsdyvn+1/2
i, j is the predicted value ofdyn+1/2

i, j through the vertex, i.e., the
predicted value ofdy for the velocity control volume. Note that Eq. (B.7) is the equivalent
to dVi, j =∇ · v dt dx dyusing Eq. (B.8) for the velocities and taking derivatives on the
original Eulerian grid. With these definitions if we insist that∑

i, j

1Ei, j = −
∑
i, j

Pn+1/2
i, j dVi, j (B.9)

with E = ∫ ρ εdτ , then the scheme will conserve energy to machine precision. This
amounts to using Eq. (B.8) to find average velocities and then when calculating the adia-
batic P dV heating term in Eq. (4), making sure that we use these same average velocities.
This is also sufficient to guarantee that at the Lagrangian corrector step all derivatives are
still taken on the original Eulerian grid. This last property also carries over to finding the
time-centered magnetic forces in Eq. (2). However, we have no proof that exact energy
conservation holds when the magnetic field is included. Indeed, in this code the magnetic
field at the end of the Lagrangian step is never actually needed or calculated. Thus when
energy errors are quoted in this paper they must entirely be due to errors in the magnetic
field update scheme.

APPENDIX C

Kinetic Energy Remap

In this Appendix we present the calculations used to conserve energy in the remap step.
We consider the change in the kinetic energy. This is then summed over the cells to find
the energy which is lost in the remap. This energy is then added into the internal energy
as a heating term, thus conserving the energy (note that magnetic energy can still be lost).
We explain the velocity remap energy conservation by describing the first-order donor cell
method. The full remap for any order is similar but with the velocities replaced by fluxes.
Here we deal only with thex remap. They andz remaps are carried out in a similar manner.
The x remap step usesu0

i as the vertex velocity before the remap andu′i as the vertex
velocity after the remap. Conservation of mass can be written as

m′i = m0
i − dmi+1/2+ dmi−1/2, (C.1)

wherem0
i is the mass in the velocity control volume before the remap andm′i that after the

remap.dmi+1/2 is the mass flux through the left boundary of the velocity cell during the
remap. The remap also conserves momentum; i.e.,

u′i m
′
i = u0

i m0
i − u1/2

i+1/2dmi+1/2+ u1/2
i−1/2dmi−1/2, (C.2)
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We consider the change in the kinetic energy,

1K Ei = 1

2
m′i (u

′
i )

2− 1

2
m0

i

(
u0

i

)2
, (C.3)

or

1K Ei = u0
i

(
u1/2

i−1/2−
1

2
u0

i

)
dmi−1/2− u0

i

(
u1/2

i+1/2−
1

2
u0

i

)
dmi+1/2+ 1

2
m′i a

2
i , (C.4)

where

ai =
(
u0

i − u1/2
i+1/2

)dmi+1/2

m′i
+ (u1/2

i−1/2− u0
i

) dmi−1/2

m′i
. (C.5)

We now split1K Ei, j in terms ofdmi+1/2 anddmi−1/2 to obtain,

1K Ei = dmi+1/2

(
−u0

i

(
u1/2

i+1/2−
1

2
u0

i

)
+ (u1/2

i+1/2− u0
i

)ai

2

)
+ dmi−1/2

(
u0

i

(
u1/2

i−1/2−
1

2
u0

i

)
+ (u0

i − u1/2
i−1/2

)ai

2

)
. (C.6)

For exact kinetic energy conservation we require∑
i

1K Ei = 0. (C.7)

However, we have ∑
i

1K Ei =
∑

i

dki+1/2dmi+1/2, (C.8)

where

dki+1/2 =
(
u0

i+1− u0
i

)(
u1/2

i+1/2−
1

2

(
u0

i+1+ u0
i

))+ 1

2
ai

(
u1/2

i+1/2− u0
i

)
+ 1

2
ai+1

(
u0

i+1− u1/2
i+1/2

)
. (C.9)

This means that we have total energy conservation if we convert the lost kinetic energy
into thermal energy by using∑

i

1(ερτ)i+1 = +
∑

i

dki+1/2dmi+1/2. (C.10)

The Lagrangian step followed by a remap onto the original Eulerian grid is not an
operator-splitting algorithm. There is no time dependence at all in the remap step which
is simply a geometrical rezoning of computational variables. It is for this reason only that
we are allowed to enforce total energy conservation in this way. Indeed, all conservative
schemes, i.e., schemes cast in the form of Eq. (16), which limit the momentum or velocity
at shocks by enforcing total energy conservation will ensure that dissipated kinetic energy
appears as thermal energy. Since we do not use conservative forms we must ensure that this
happens by a different computational mechanism.
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